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Résumé

Mots clés : Apprentissage profond géométrique, Bioinformatique structurale, Drug design

L’apprentissage automatique a permis plusieurs percées dans la gestion des données tabu-
laires, d’images ou de texte. Il a également commencé à aider la science, par exemple avec
Alphafold, mais son application aux questions scientifiques n’est pas immédiate. Le premier défi
consiste à modéliser des objets naturels avec des objets mathématiques représentés dans un or-
dinateur - comme des images - tout en respectant leurs propriétés physiques. Le deuxième défi
est d’étendre les méthodes d’apprentissage à de nouveaux objets mathématiques et numériques
avec plus de structure, un domaine de recherche connu sous le nom d’apprentissage profond
géométrique. Avoir un éventail plus large d’objets mathématiques nous donne plus de liberté
pour modéliser efficacement nos objets naturels pour l’apprentissage automatique.

La biologie structurale est un domaine scientifique visant à comprendre le vivant en utilisant
les structures tridimensionnelles de molécules importantes, disponibles grâce à des outils expéri-
mentaux et informatiques. Ce domaine s’appuie donc sur des données structurées qui pourraient
se prêter à l’apprentissage automatique si les deux défis ci-dessus étaient relevés. Parmi les prin-
cipales applications de la biologie structurale figure la découverte de médicaments, qui vise à
trouver de potentiels médicaments dans un vaste espace de composés chimiques. Dans l’approche
centrée sur les cibles thérapeutiques, les structures tridimensionnelles de celles-ci sont utilisées
pour sélectionner ces potentiels médicaments. Cette approche pourrait être révolutionnée par
l’utilisation de l’apprentissage profond géométrique.

Nous commençons par un apport méthodologique qui permet de respecter la structure des
molécules d’ADN représentées sous forme de châınes de caractères. En effet, une telle repré-
sentation néglige la symétrie du brin complémentaire qui découle de l’appariement des deux
brins de l’ADN. En utilisant la théorie de l’équivariance, nous caractérisons la classe de modèles
d’apprentissage automatique qui respectent cette structure supplémentaire. Nous montrons em-
piriquement qu’utiliser cette classe de modèles améliore la précision de la prédiction de la liaison
des facteurs de transcription.

Nous préconisons ensuite l’utilisation d’un type spécifique de graphe pour représenter l’ARN
en conjonction avec des méthodes d’apprentissage profond pour les graphes. Ce type spécifique
de graphes est une représentation gros-grain et discrète introduite par les biochimistes il y a
vingt ans. Nous montrons que l’utilisation de cette représentation est supérieure à l’utilisation de
graphes de base et suffisante pour extraire un signal pertinent pour la découverte de médicaments
ciblant l’ARN. De plus, nous pouvons tirer parti de ce cadre d’apprentissage pour détecter
efficacement des motifs structuraux dans l’ARN, en relâchant les contraintes imposées à ces
motifs par les outils préexistants. Nous avons publié un package pour utiliser cette représentation
dans les applications d’apprentissage automatique.

Enfin, nous présentons trois outils pour aider à la découverte de médicaments centrés sur
les cibles thérapeutiques qui reposent sur l’apprentissage automatique. Nous proposons un outil
dédié à la recherche de sites de liaison aux sites d’interaction protéine-protéine en prédisant
simultanément la liaison aux petites molécules et aux protéines. Nous proposons également un
outil pour regrouper efficacement les conformations d’une trajectoire de dynamique moléculaire,
permettant la sélection de conformations représentatives pertinentes. Enfin, nous proposons une
méthode qui génère des populations de composés avec une affinité accrue pour une cible donnée.
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Summary

Keywords : Geometric deep learning, Structural bioinformatics, Drug design

Machine learning has enabled several breakthroughs in tabular, image and text data manage-
ment. It has also started to help science, for instance Alphafold, but its application to scientific
questions is not necessarily straightforward. The first challenge is to model natural objects as
mathematical objects that can exist in a computer - like pictures - while respecting their physical
properties. The second challenge is to expand machine learning methods to work on mathemat-
ical and numerical objects with more structure, in a field known as geometric deep learning.
Having a wider range of mathematical objects gives us more freedom to efficiently represent our
natural objects for machine learning.

Structural biology is a scientific field aiming at understanding life by using the 3D structures
of important molecules, available thanks to experimental and computational tools. This field
thus relies on structured data that could be amenable to machine learning if the two challenges
above were addressed. Among the major applications of this structural biology is drug discovery
that aims at finding potential drugs in a vast space of chemical compounds. In the target-centric
approach, the 3D structures of target molecules are used to select these promising compounds.
This approach could be revolutionized by the use of geometric deep learning.

We start by a methodological contribution that helps respect the structure of DNA molecules
represented as strings. Indeed, such representation traditionally overlooks the reverse-complement
symmetry that stems from the double-stranded nature of DNA. By using the theory of equivari-
ance, we characterize the class of machine learning models that respect this additional structure.
We empirically show that using this class of models enhances the accuracy of the prediction of
transcription factor binding.

We then advocate for the use of a specific type of graph to represent RNA in conjunction
with deep learning methods for graphs. This specific type of graph is a coarsened, discrete
representation that was introduced by biochemists twenty years ago. We show that using this
representation is superior to using basic graphs and sufficient to extract a signal relevant to
RNA drug discovery. Moreover, we can leverage this learning framework to efficiently detect
structural motifs in RNA, relaxing constraints imposed on these motifs by pre-existing tools.
We release a package to use this representation in machine learning applications.

Finally, we introduce three tools to help target-centric drug discovery that rely on machine
learning. We offer a tool that is dedicated to finding the binding sites at protein-protein interac-
tion sites by simultaneously predicting small-molecules and protein binding. We also propose a
tool to efficiently cluster together conformations from a molecular dynamics trajectory, enabling
for selection of relevant representative conformations. Lastly, we propose a method that itera-
tively generates populations of compounds with higher and higher predicted affinity to a given
target.

IV



Résumé substantiel

Dans le contexte d’une thèse rédigée en anglais en France à l’université Paris-Cité, nous
incluons un résumé plus long (12 000 caractères) qui reprend le déroulé de la thèse en français

Apprentissage profond géométrique pour la
bioinformatique structurale

L’apprentissage automatique consiste en un ensemble de méthodes algorithmiques qui uti-
lisent de l’expérience pour améliorer leur performance. Le domaine a commencé à apparâıtre
avec un enthousiasme modéré dès les années 50. En 2012, un réseau de neurones remporte une
compétition de classification d’images, marquant le début d’une explosion d’intérêt autour de ce
domaine. Depuis cette époque, l’approche dominante d’apprentissage automatique est d’ajuster
les valeurs des paramètres d’un modèle pour en minimiser l’erreur sur des données connues. Les
progrès de ces méthodes d’apprentissage ont révolutionné de nombreux domaines du numérique
et le traitement automatisé de leurs données. Ces méthodes ont été particulièrement optimisées
pour gérer des objets mathématiques bien précis qui sont les représentations numériques du
texte, de l’image ainsi que des données tabulaires.

La recherche scientifique est basée sur l’accord entre des modèles explicatifs avec des mesures
expérimentales. Il est donc naturel de vouloir appliquer des méthodes d’apprentissage à des
questions scientifiques, avec des applications à succès comme AlphaFold. Celà étant, représenter
un objet naturel par un objet numérique tout en respectant ses propriétés physiques représente un
défi de modélisation. Le deuxième défi est d’étendre les méthodes d’apprentissage à de nouveaux
objets mathématiques et numériques avec plus de structure, un domaine de recherche connu
sous le nom d’apprentissage profond géométrique. En effet, avoir un éventail plus large d’objets
mathématiques pour l’apprentissage automatique nous donne plus de liberté pour modéliser
efficacement nos objets naturels.

La biologie structurale est un domaine scientifique visant à comprendre le vivant en utilisant
les structures tridimensionnelles de molécules importantes. Les structures de ces objets sont
une représentation qui se prête bien à des simulations physiques puisque celles-ci impliquent
souvent des forces dépendantes de la distance géométrique. Malheureusement, les simulations
physiques peinent à simuler les interactions entre grosses biomolécules. Par ailleurs, des données
structurales sont disponibles grâce à des outils expérimentaux et informatiques. Il est donc
raisonnable de vouloir s’appuyer sur ces données et l’apprentissage automatique pour répondre
aux questions insolubles par des méthodes traditionnelles. Ces données structurées ne sont ni
du texte ni des images, si bien que les exploiter avec de l’apprentissage automatique nécessite
de relever les deux défis mentionnés ci-dessus.

Parmi les principales applications de la biologie structurale figure la découverte de médi-
caments, qui vise à trouver de potentiels médicaments dans un espace de composés chimiques
immensément vaste. Ce processus est encore très long et coûteux (15 ans et 2 milliards de dollars
en moyenne). Il dispose lui aussi de données et des méthodes d’apprentissages ont déjà été déve-

V



loppées pour explorer plus efficacement l’espace chimique. Ces petites molécules agissent en se
fixant à des biomolécules, appelées cibles thérapeutiques, dont elles modifient le comportement.
C’est là qu’intervient la biologie structurale. Dans l’approche centrée sur les cibles thérapeu-
tiques, les structures tridimensionnelles des cibles sont utilisées pour sélectionner les composés
les plus prometteurs. En raison du caractère structuré de ces données, peu de méthodes d’ap-
prentissage ont été utilisées dans cette approche. Celle-ci pourrait donc être révolutionnée par
l’utilisation de l’apprentissage profond géométrique.

Dans ce travail nous essayons d’aborder les deux défis susmentionnés et de répondre à la
question de comment faire des algorithmes d’apprentissages efficaces sur les structures des bio-
molécules. Outre des applications fondamentales, nous utilisons le domaine d’application de la
découverte de médicaments pour jauger de l’efficacité de nos méthodes. Par ailleurs, nous es-
sayons aussi de contribuer dans ce domaine en identifiant des tâches qui peuvent se prêter à
l’application de nos méthodes et ainsi être réalisées plus efficacement.

Nous commençons par une contribution méthodologique qui permet de respecter la structure
mathématique des molécules d’ADN représentées sous forme de châınes de caractères. En effet,
la manière la plus classique de récolter des données sur l’ADN est d’utiliser un ensemble de
technologies appelées des séquenceurs. Ces séquenceurs lisent indifféremment les deux brins de
l’ADN ce qui aboutit à la présence de deux résultats possibles et équivalents pour le même objet.
La représentation par châıne de caractères néglige cette symétrie du brin complémentaire. En
utilisant la théorie de l’équivariance, nous caractérisons les fonctions linéaires et les fonctions
de non linéarités ponctuelles qui respectent cette symétrie. Nous montrons empiriquement que
prendre en compte cette propriété améliore la précision de modèles qui prédisent la liaison des
facteurs de transcription. Nous rendons disponible notre implémentation à la communauté.

Nous nous sommes aussi intéressés à la modélisation de l’ARN pour l’apprentissage auto-
matique. La flexibilité de l’ARN le rend difficile à modéliser. De plus, elle complique sa déter-
mination structurale, ce qui diminue la quantité de données disponibles pour les algorithmes
d’apprentissages. Il faut donc utiliser une représentation numérique qui encode déjà beaucoup
de propriétés importantes de ces molécules. Un type spécifique de graphes mathématiques, qu’on
appelle graphe 2.5D, est une représentation gros-grain et discrète introduite par les biochimistes
il y a vingt ans. Les nœuds représentent des nucléotides d’ARN et les arêtes sont divisées en 13
catégories qui représentent des types d’interactions chimiques. Dans les cinq dernières années,
des méthodes permettant de conduire de l’apprentissage sur des graphes ont été développées.
Nous préconisons l’utilisation de graphes 2.5D pour représenter l’ARN en conjonction avec des
méthodes d’apprentissage profond pour les graphes pour apprendre sur des structures d’ARN.

Dans une première contribution, nous associons à des sites de liaison ARN, un pharmaco-
phore qui est un ligand idéal permettant de trier les potentiels ligands de cette poche. Pour ce
faire, nous utilisons un algorithme d’apprentissage sur les sites de liaisons représentés par des
graphes 2.5D. Nous montrons que cette méthode permet de trouver un signal supérieur aux mé-
thodes existantes, et pertinent pour la découverte de médicaments ciblant l’ARN. Par ailleurs,
en entrâınant également l’algorithme sur des graphes classiques, nous montrons que l’utilisation
de graphe 2.5D est supérieure à l’utilisation de graphes standards.

Motivés par ce résultat, nous tirons parti de l’utilisation jointe de cette représentation et
de méthodes d’apprentissage sur graphe pour détecter efficacement des motifs structuraux dans
l’ARN. Ces motifs sont des sous-structures observées fréquemment dans l’ARN. Une représen-
tation latente, continue et vectorielle de sous structures dans ces graphes est apprise par une
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méthode sur graphes. Cette représentation permet d’aligner les structures expérimentales de
l’ARN dans l’espace latent et d’y trouver des sous structures abondantes et qui coexistent fré-
quemment. Notre méthode permet de trouver des graphes similaires à un motif de graphe donné
en entrée. Elle permet également de chercher automatiquement les motifs présents dans une
base de données. Cette formulation permet de relâcher les contraintes sur les motifs structuraux
imposées par les outils préexistants. Nous montrons que notre méthode permet de retrouver et
étendre des motifs connus. Elle permet également de découvrir de nouveaux motifs dans l’ARN.

Nous avons de plus publié un paquet Python pour faciliter l’utilisation de graphes 2.5D
pour représenter l’ARN pour l’apprentissage automatique. Ce paquet inclut la représentation de
toutes les structures d’ARN connues par des graphes 2.5D. Il comprend également de nombreuses
fonctionnalités pour télécharger, manipuler, comparer et dessiner ces graphes. Enfin plusieurs
modèles d’apprentissages sont disponibles ainsi que des procédures d’entrâınement. Nous espé-
rons que les résultats positifs obtenus et la disponibilité de ce paquet favoriseront l’adoption des
graphes 2.5D pour l’apprentissage sur la structure de l’ARN.

Enfin, nous présentons trois outils qui reposent sur l’apprentissage automatique pour aider
à la découverte de médicaments centrés sur les cibles thérapeutiques. Dans un premier temps,
nous proposons un outil dédié à la recherche de sites de liaison aux sites d’interaction protéine-
protéine. Ces sites sont des cibles thérapeutiques intéressantes car elles correspondent souvent à
une partie fonctionnelle d’une protéine : par exemple le site de liaison d’un pathogène à son hôte.
Cependant ces cibles sont plus délicates car les interfaces d’interactions protéine-protéine sont
souvent moins favorables à la liaison de petites molécules et les exemples sont moins nombreux
dans les bases de données. Nous appuyons notre méthode sur une base de données développée
en interne et récemment publiée qui contient ces exemples filtrés. Nous entrâınons ensuite un
algorithme à prédire simultanément pour une protéine donnée, ses sites de liaison aux petites
molécules et aux autres protéines. Cet algorithme utilise la structure de la protéine donnée. Il
a été ajusté automatiquement en collaboration avec IBM. Nous montrons qu’il est capable de
détecter efficacement les sites de liaisons de petites molécules en général et tout particulièrement
ceux qui sont à un site potentiel d’interaction protéine-protéine. Nous permettons aussi le suivi
de trajectoires de dynamiques moléculaires pour avoir une estimation plus fine qui prend en
compte l’aspect dynamique des structures de protéines. Enfin, nous avons aussi implémenté une
interface utilisateur simple d’accès pour favoriser l’adoption par la communauté.

Nous proposons également un outil pour regrouper efficacement les conformations d’une
trajectoire de dynamique moléculaire, permettant la sélection de conformations représentatives
pertinentes. Cet outil repose sur l’algorithme des cartes auto-organisatrices et avait déjà été
proposé il y a quelques années. Nous proposons une nouvelle implémentation qui utilise une
carte graphique permettant d’aller plus de cent fois plus vite. Cette implémentation permet
également un apprentissage par lots qui permet l’utilisation de la méthode sur des données de
taille arbitraire.

Enfin, nous proposons une méthode pour générer des petites molécules optimisées pour une
cible thérapeutique. Elle part du constat que de nombreux modèles génératifs ont été dévelop-
pés pour les petites molécules dans les cinq dernières années. Ces modèles, entrâınés sur des
millions de molécules existantes permettent notamment d’explorer de nouvelles molécules. Dans
notre projet, nous proposons notre propre modèle génératif qui mélange des représentations de
petites molécules par graphes et par châınes de caractères. Nous montrons qu’il a des perfor-
mances comparables à l’état de l’art tout en étant un ordre de grandeur plus rapide. De plus,
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ces modèles permettent de faire de l’optimisation moléculaire pour trouver des composés avec
certaines propriétés, une approche dite centrée sur les ligands. L’inclusion d’information sur la
cible est difficile car pour chaque composé, elle nécessite des calculs plus coûteux que de simples
propriétés moléculaires. Nous proposons d’utiliser une méthode d’optimisation compatible avec
un calcul coûteux en conjonction avec notre modèle génératif. Nous montrons que notre outil
est capable de générer des populations de composés avec une affinité accrue pour une cible.

Dans l’ensemble, ce travail étudie comment l’apprentissage automatique peut aider la biologie
structurale et son application à la conception de médicaments. Nous montrons que des méthodes
mathématiques dédiées ainsi que des représentations appropriées pour modéliser les biomolécules
améliorent les performances des approches par apprentissage automatique. Nous montrons par
ailleurs que l’utilisation de modèles d’apprentissage automatique peut être utile pour assister et
potentiellement révolutionner la découverte de médicaments.
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CHAPTER 1. INTRODUCTION

Abstract

Machine learning methods have revolutionized our approach to problems that previously
seemed out of reach. In applications with abundant data, these methods surpass any other.
On the other hand, classical approaches fail to answer some questions in the field of struc-
tural biology and drug discovery, while an increasing amount of structural data is available.
This raises two related questions : How to conduct machine learning on the structure of
biomolecules ? Can machine learning help drug discovery ? These two questions are related
because a better toolbox means increased opportunities to use it, but to judge the relevance
of the tools, we need an end goal performance to enhance.

To answer the first question, we decompose the problem into a mathematical problem
and a modeling problem. Classical machine learning methods apply to vector spaces, and
dedicated tools must be developed to learn over objects with more mathematical structure.
This development widens the set of objects we can use to model our biomolecules. We
must then decide which representation to use for which molecule, based on prior domain
knowledge.

Equipped with machine learning for biomolecules, we can leverage the available structural
data to help drug discovery. This represents an additional challenge as one needs to find new
learning formulations for problems that have been addressed with classical methods. Our
results show that using the right tools and the right representation yields better results for
learning algorithms on the structure of biomolecules. We also show that they enable solving
difficult real-world problems in an efficient way.

Résumé

Les méthodes d’apprentissage automatique ont révolutionné notre approche à l’égard de
problèmes auparavant inatteignables. Pour les problèmes où beaucoup de données sont dis-
ponibles, ces méthodes surpassent toutes les autres. D’autre part, les approches classiques
peinent à répondre à certaines questions dans le domaine de la biologie structurale et de la
découverte de médicaments, alors qu’une quantité croissante de données structurales est dis-
ponible. Cela soulève deux questions liées : Comment mener un apprentissage automatique
sur la structure des biomolécules ? L’apprentissage automatique peut-il aider à la découverte
de médicaments ? Ces deux questions sont liées car de meilleurs outils signifient plus d’op-
portunités d’utilisation, mais pour juger de la pertinence des outils, nous avons besoin d’un
objectif final à améliorer.

Pour répondre à la première question, nous décomposons le problème en un problème
mathématique et un problème de modélisation. Les méthodes classiques d’apprentissage au-
tomatique s’appliquent aux espaces vectoriels, et des outils spécifiques doivent être développés
pour apprendre sur des objets avec plus de structure mathématique. Ce développement élar-
git l’ensemble des objets que nous pouvons utiliser pour modéliser nos biomolécules. Nous
devons ensuite décider quelle représentation utiliser pour quelle molécule, sur la base de notre
connaissance préalable du domaine.

Équipés d’un apprentissage automatique pour les biomolécules, nous pouvons tirer parti
des données structurales disponibles pour aider à la découverte de médicaments. Cela repré-
sente un défi supplémentaire car il faut trouver de nouvelles formulations par apprentissage
pour des problèmes jusqu’alors abordés par des méthodes classiques. Nos résultats montrent
que l’utilisation des outils et de la représentation pertinents donne de meilleurs résultats pour
des algorithmes apprenants sur la structure des biomolécules. Nous montrons également qu’ils
permettent de résoudre efficacement des problèmes réels difficiles.
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1.1. PREFACE

1.1 Preface

My PhD lies at the intersection of several fields. I have thus chosen to write a short primer on
machine learning in general along with a primer on structural biology and drug discovery, to set
the stage for the actual dissertation. One can see this as a useful reference point for machine
learning experts interested in the content but who need some introduction to the biology side,
or vice versa. Newcomers can read it entirely and practitioners skip it altogether.

Statistical machine learning (see section A.1) is the process of approximating a theoretical
relationship between theoretical objects, based on empirical observations. The observations we
have are considered as samples from a theoretical underlying distribution and are then further
represented into a format that a computer can deal with. Then the theoretical relationship is
modeled with a flexible parametric function between our represented samples. An optimization
is conducted to find the parameters of the function that give the lowest error for our model -
this process is called learning.

The field of biology is concerned with the study of living organisms, who display a hierarchical
organization. The bottom up approach to understanding life, named molecular biology, studies
bio-molecules and their interactions to explain biological processes. Structural biology explains
these molecular interactions using the spatial structure of these molecules. This motivates the
development of experimental and computational tools to determine this structure and to predict
function from structure. See section A.2 for more details.

Exactly solving quantum chemistry equations is not tractable for the structure of the large
molecules of structural biology. Besides, more and more structural data is available thanks
to experimental progress and to decades of joint community effort. Therefore, a promising
avenue to answer structural biology questions is to leverage these empirical measurements with
machine learning. This raises the question of how to conduct machine learning on the structures
of biomolecules.

The first challenge is to respect the mathematical properties of structural data, because
it cannot trivially be represented as the vectors that are manipulated by classical machine
learning algorithms. We investigate dedicated machine learning methods in section 1.2 and
also expand this toolbox in chapter 2. This broadens the set of mathematical objects that
we know how to perform machine learning on. The second challenge is to respect the known
properties of biomolecules. We need to understand what are the important properties and
suitable representations of each family of molecules (section 1.3). We then empirically investigate
which of these representations are best for learning on structures throughout the thesis.

Understanding life also opens the door to human intervention in those natural processes, for
instance to fix the molecular malfunctions that cause a disease. The most classical way to do so
is small-molecule drug discovery (see section A.3). Drug discovery has already started to benefit
from machine learning methods. However, the structural information that is used by traditional
target-centric drug discovery is still relatively under-exploited by machine learning methods (see
section 1.4). This is partly due to the question of how to learn on these objects being unanswered.
We chose structure-based drug discovery as our main application for geometric deep learning
methods and validated that these methods enhanced existing drug discovery tools in chapters
3, 6 and 8.
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Figure 1.1 – Visual abstract of the context of the thesis : We try to solve a task T1 using
machine learning, yielding a result in terms of a metric ranging from zero to one (we show
arbitrary values). The classical vector representation of the protein as a k-dimensional vector
yields a metric value of 0.83. However we could learn on different protein representations, using
graphs or surfaces for instance. This raises the question of which numerical objects can be used
in machine learning. For instance the methods to learn on surfaces are not fully established
yet (?1). It also raises a question of modeling, for instance there are several ways to represent a
protein as a coarse-grained graph (?2). Even equipped with a known mathematical model and
methods that are able to learn on this mathematical structure, most combinations still need to
be explored. For instance, to our knowledge, there are no applications of point cloud learning
method to point clouds of residues (?3). Finally, finding the tasks {T1, T2, . . . Tn} of relevance
for drug discovery is also a challenge. We believe that all these questions must be addressed
simultaneously, because they have related answers.
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1.2. GEOMETRIC DEEP LEARNING

1.2 Geometric Deep Learning

Traditional machine learning manipulates vectors without mathematical structure. However,
we sometimes know that our data has mathematical properties beyond those of a simple vector
space. This is especially true of structured objects, which are of paramount importance for our
structural biology applications. Geometric deep learning is concerned with methods that we
obtain from these mathematical properties of our data [Bronstein et al., 2017, 2021].

A first source of mathematical structure is the existence of a distance between points that is
not the euclidean distance - motivating the term geometric learning. The first main illustration
of such spaces is surfaces - more formally manifolds - , where the distance between two points is
given by the geodesic distance. The other main application is mathematical graph data where
points are related by a neighborhood function. We will see that the main challenge with these
structures is to take the induced neighborhood relationship into account in learning algorithms.

Another source of mathematical structure comes from group symmetries of the data. This
symmetry often arises because we need to represent our data in a computer using an arbitrary
decision. For instance, the unordered set {1, 2} will be represented in our computer as one of
the two arrays [1, 2] or [2, 1] - we arbitrarily pick an order. The major source of arbitrary choices
in our application is the choice of a basis to represent 3D coordinates. The right framework to
deal with such symmetries is the group equivariance framework. We will now detail how to deal
with these two mathematical structures in machine learning methods.

1.2.1 Equivariant networks

These networks are useful when a group acts on our input or output. Groups are a very basic
algebraic notion, where a set is endowed with an operation that combines its element to give
another element of the set. The set of real numbers endowed with additions, or invertible
matrices with matrix multiplication are groups. On a finite vector space, representing a group
simply consists in associating an invertible matrix to each element of the group.

Formally speaking, a group G is a set endowed with an operation : G × G −→ G that is
associative, has an identity element and an inverse element for each element of the set. Now let X
be a set, a group action ρ is a map ρ : G −→ Bij(X ) such that ∀g1, g2 ∈ G, ρ(g1 g2) = ρ(g1)◦ρ(g2).
If X is a vector space, and the image set of ρ is restricted to bijections that are linear, ρ is said
to be a linear representation of the group. Linear representations were extensively studied and
we refer the reader to [Serre, 1977] for an excellent introduction. The easiest example of a
representation is the trivial representation that associates the identity on X to all elements in
the group : ρtriv(g) = IX . For a finite group, let us consider the group elements as the basis
elements of a vector space X . The regular representation is defined as ρreg(h)(λig

i) = λi(h g
i).

Let us now introduce a key property of group representations. Let Y be a vector subspace
of X , we say it is stable under ρ if ∀g ∈ G, ρ(g)(Y) ⊂ Y. The restriction of the representation
to Y is a representation of G denoted as a subrepresentation. A representation without sub-
representation except for the restriction to zero is called an irreducible representation. They
depend only on G and are called the irreps of G. For any finite dimensional vector space X , any
representation ρ decomposes into a direct sum of irreducible representations.

Given two group representations ρA and ρB on two spaces A and B, a function ψ : A −→ B
is equivariant if ψ ◦ ρA = ρB ◦ ψ. This means that the function on a group-perturbed input
yields the same result as applying the group perturbation on the output of the function on the
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CHAPTER 1. INTRODUCTION

native input. A notable instance of equivariance is invariance when the representation on B is
the trivial representation. The function output is then constant with regards to input group
actions.

As an illustration, we can think of the set of real numbers between 0 and 2π endowed with
addition modulo 2π. This constitutes a group, also known as SO(2), the group of 2D rotations,
where the number is the ‘angle’ of the rotation. A natural group action on R2 is ρA, that rotates
vectors canonically. This group can also act on higher dimensional vectors by a representation
ρB rotating their first two coordinates and leaving the others put. These two representations
for a rotation of angle α can be mathematically written as :

ρA(α)(x1, x2) = cos(α). x1 − sin(α). x2, sin(α). x1 + cos(α). x2

ρB(α)(x1, x2, · · · , xk) = ρA(α)⊗ ρtriv(α) = ρA(α)(x1, x2), x3, · · · , xk .

Now let us imagine that we want to color 2D grayscale images with a parametric function
fθ : R2 −→ R2× [0, 255]3. For each pixel of the image, this function returns three values between
0 and 255. We want this function to be equivariant with regards to the group actions mentioned
above, because rotating the image should not affect its colors : ρB ◦ fθ = fθ ◦ ρA. This is
illustrated in Figure 1.2

Figure 1.2 – Illustration of the concept of equivariance. If an equivariant colorizing function
fθ is used, rotation of the input yields a consistent output

Equivariant deep neural networks were introduced in a seminal paper [Cohen and Welling,
2016] and have sparked a great enthusiasm in the community. This paper introduced the formal-
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1.2. GEOMETRIC DEEP LEARNING

ism of group representation for the group p4 acting on input images through rotations. Then,
the authors choose a specific representation for the intermediate feature spaces, namely the
one induced by the regular representation. They designed equivariant layers with regards to
this group and group representation and empirically showed increased performances. This work
has sparked great enthusiasm in the community. The same authors expanded their theoretical
framework by enabling the use of any representations instead of only the regular ones, using the
irreps decomposition [Cohen and Welling, 2017]. Then they expanded again their theoretical
framework to include any group acting on a homogeneous space - for which the group action
enables going from a point to any other - of this group [Cohen et al., 2019b]. The solutions
exhibited in these papers are actually all equivariant linear maps. This was proven for regular
representations first [Kondor and Trivedi, 2018], and for any representation then, by construction
[Cohen et al., 2019b]. Another interesting approach for the same result was provided by Esteves
[2020] while it was shown that all continuous equivariant functions could be approximated by
a stack of equivariant layers [Dym and Maron, 2020], a classic universality result on classical
neural networks.

Motivated by these theoretical results, several papers propose equivariant layers for specific
groups. Dealing with rotation was chief among the motivation for equivariant networks. The
first line of paper was mostly dealing with 2D rotations [Dieleman et al., 2016; Weiler et al.,
2018b; Worrall et al., 2017] as equivariance can be obtained from engineering. Several papers
were proposed also for 3D rotations [Anderson et al., 2019; Kondor, 2018; Kondor et al., 2018;
Thomas et al., 2018; Weiler et al., 2018a]. However these methods involve using a basis of
equivariant kernels that rely on the spherical harmonics. These harmonics can be precomputed
on a grid kernel and then used within the Volumetric framework [Weiler et al., 2018a]. Spherical
harmonics require a small grid step to capture high frequencies, resulting in high memory usage.
They can also be computed at discrete locations on the fly [Thomas et al., 2018], resulting
in a computational overhead. The general implementations [Geiger et al., 2022; Weiler and
Cesa, 2019] should be saluted. Some papers also introduce equivariant attention frameworks,
going beyond the equivariant linear layers [Fuchs et al., 2020]. To address the computational
burden of equivariant methods, an avenue is to use less general but more efficient methods
[Satorras et al., 2021]. Equivariant networks were shown to help learning in several applications
: medical imaging [Winkels and Cohen, 2019], reinforcement learning [van der Pol et al., 2020]
or histopathology [Graham et al., 2020; Lafarge et al., 2021].

However, these networks were mostly developed in the context of euclidean spaces, where
one could leverage that euclidean spaces are homogeneous spaces for the group of translations.
Actually, this results carries over easily to the homogeneous setting of the 3D sphere and SO(3)
group [Cohen et al., 2018]. However, some spaces of interest do not have a euclidean geometry
and need specific tools.

1.2.2 Non euclidean spaces

In non euclidean spaces, the objects cannot be added or translated trivially. There exists however
a meaningful notion of distance, that induces neighboring relationships that retain a lot of
information. We will focus mainly on graphs and manifolds as they are both the main focus of
the methods development and the most useful tools for our structural biology applications.

Graphs are defined as a pair G = (V,E), where V is an unordered collection of objects, called
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nodes, and E is a set of pairwise connections between these objects, called edges. We can define
a path on this graph as a sequence of contiguous edges going from one object to another and
the length of a path as the length of the sequence. The shortest-path distance is a pairwise
distance defined as the shortest path between the nodes of the pair. Famous graphs include
social networks with users and connections between them, or genealogical trees.

Manifolds formalize the notion of surfaces as objects that look like euclidean space locally.
The most classical manifold example is the round surface of the earth. Locally it looks flat and
can be represented accurately with flat maps, which is not true globally. One can go from one
point of Riemannian manifold to another following the surface. The shortest such path again
induces a distance that can differ widely from the euclidean distance. For instance, Paris and
Auckland are eighteen thousands kilometers away while the diameter (longest straight line in
a sphere) of the earth is only about thirteen thousand kilometers. Another example is how we
can touch our hips even though our hands are far from our hips if we follow the surface of our
body : our skin. Using this surface distance conveys useful information, for instance height can
be robustly estimated using the distance from head to toe, even in a sitting position.

More formally, let M be a topological space and U ⊂ M be an open subset of M. A chart
(U, φ) is an homeomorphism from U to an open subset of the euclidean space of dimension n.
An atlas on M is defined as collection of charts {(Ui, φi), i ∈ N} such that ∪iUi = M . It is
said to be differentiable if ∀i, j, φi ◦ φ−1

j is differentiable on Ui ∪ Uj . Smooth manifolds are
topological spaces equipped with a differentiable atlas. Given a point p ∈ U , one can define the
set of derivable functions γ : U −→ R such that γ(0) = p and an equivalence relation if their
derivative at 0 coincide : γ1 ∼ γ2 ⇐⇒ γ′1(0) = γ′2(0). The equivalence class of this relation
induce a vector space called the tangent space at p and denoted TpM . A Riemannian metric is a
set of inner product in TpM defined for each p, and there always exist one for smooth manifolds.
A Riemannian manifold is a smooth manifold equipped with a Riemannian metric. Given a
differential curve γ[a, b] −→ M , one can compute its length integrating the Riemannian norm of
the curve derivative. This enable us to define the geodesic distance between p and p’, as the
minimum of the length of curves going from p to p’. One can discretize manifolds as graphs
with vertices sampled on the manifold, and connections between points with a small geodesic
distance. These two mathematical objects are illustrated in the Figure 1.3.

Figure 1.3 – Graph and Riemannian manifold examples. Left : The Minnesota road network
where grey lines are the edges and represent roads while red circles are the nodes that represent
road intersections. Right : Human represented as a coarse surface or manifold, sampled from
the SCAPE database [Anguelov et al., 2005].
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1.2. GEOMETRIC DEEP LEARNING

Now that we have introduced our mathematical objects, we want to derive parametric func-
tions that take into account their properties. A prior information that was heavily used in
computer vision is the fact that objects are made of components in a hierarchical organization,
and that these components can appear in different parts of the input object. Road signs can
appear in different parts of pictures and similarly, chemical functional groups can appear at sev-
eral places in a molecule. However, if we want a model to learn to drive or to predict molecular
toxicity, we would like to be able to learn these sub-components without regard to their local-
ization. This has motivated the use of convolution with learned filters - Convolutional Neural
Networks (CNNs) - in the euclidean domains [Fukushima and Miyake, 1982; LeCun et al., 1989,
1998]. This architecture was the foundation of AlexNet [Krizhevsky et al., 2012], a CNN that
reached superhuman accuracy on image classification, allegedly the spark of the deep learning
frenzy.

CNNs are often seen as a template matching algorithm, where the template is localized -
small compact support - and learnt. This template is then translated on top of the image to
produce an output signal. One can actually define convolutions as the linear operators that are
equivariant to translation. On a regular grid topology, there is a very efficient implementation
and the procedure has been extensively used. Convolutions have a tight connection to Fourier
space through the convolution theorem. This theorem states that the Fourier representation
of the convolution of two signals is the pointwise product of their Fourier decomposition. On
non-euclidean spaces though, there is no easy way to even define convolution, because of the
lack of a meaningful translation operator. To retrieve convolutions, there are two main avenues
: the spectral and spatial ones.

Building convolution on graphs was pioneered using the spectral approach [Bruna et al., 2013;
Henaff et al., 2015] and relies on the convolution theorem. Defining convolution as a product
in the Fourier space alleviates the need for a translation operator, but poses the problem of
generalizing Fourier to non-euclidean domains. This is done by noticing that the Fourier basis
is the eigen basis of the Laplacian operator in 1D. There are generalized Laplacians such as the
Laplace Beltrami Operator (LBO) or the Graph Laplacian, on manifolds and graphs respectively.
By diagonalization of these operators, we obtain an eigen basis for our signals, analogous to a
Fourier basis. This basis is exemplified in Figure 1.4. In this basis, we can then make point-
wise products that correspond to spatial convolutions. In practice this approach has the major
limitation of making the learning rely on the diagonalization step, both computationally costly
and unstable across different graphs or manifolds. These limitations were addressed by ChebNet
[Defferrard et al., 2016] that noticed that polynomials of the eigenvalues could be expressed as
polynomials of the Laplacian - resulting in state-of-the-art performance. This approach served as
a foundation for more modern methods like DiffusionNets [Sharp et al., 2022] and as a theoretical
justification for spatial approaches.

The spatial approaches adapt the template matching view by defining ways to make local
neighborhoods look euclidean, which is almost the definition of a manifold. Then a learnt
template is applied in each of those neighborhoods. For instance, one can use a convolution
with small spatial support in radial coordinates, where the radius is the geodesic distance and
the angle is with regards to an intrinsic orientation [Masci et al., 2015]. The notion of local
radial coordinates was then extended with variations yielding better performances [Boscaini
et al., 2016; Monti et al., 2017]. For graphs, since the notion of angles does not make sense, one
can compute filters that only depend on the shortest path distance or immediate neighborhoods
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Figure 1.4 – The first two eigenvectors of the Laplacian on a graph and a manifold. The
first one is a constant vector associated with a zero eigenvalue while the other one captures
the longest dimension of the object (slowest diffusion). Figure adapted from [Bronstein et al.,
2017].

[Kipf and Welling, 2016]. This framework was then extended to take edge types into account,
simply by learning different filters by edge type [Schlichtkrull et al., 2018]. These methods were
also discovered independently by the computational chemistry community to represent molecules
[Duvenaud et al., 2015; Kearnes et al., 2016]. The general key components are convolution filters
applied to each node and a symmetric function that aggregates the messages of all neighbors -
a framework known as the Message Passing Neural Networks (MPNN) [Gilmer et al., 2017].

Classical machine learning is conducted over vector spaces. Geometric deep learning methods
extend the set of mathematical objects we can perform machine learning on, to graphs, manifolds
and sets acted on by a group. This field is still actively researched to keep expanding this toolbox,
understand better these methods theoretically and make their implementation more efficient.

The development of these tools raise questions about their applicability and usefulness. Ma-
chine learning most successful methods operate on text and image data, which are generated in
copious amounts by modern technologies, justifying these approaches. Geometric deep learning
enables dealing with more sophisticated objects that arise in many more domains. The appli-
cation of these methods often relies on a step of modeling natural objects, making the design
of meaningful benchmarks more challenging. This disrupts the classical way machine learning
research is conducted and calls for interdisciplinary collaborative design of models.

1.3 Representation of biomolecules

Some man-made objects are mathematical, as well as their canonical representation. When
learning on such objects, aforementioned methods make complete sense. For instance, social
networks are graphs, so to perform machine learning on social networks, one should use graph
neural networks. On the other hand, bio-molecules are natural objects that are only modeled
with one of these mathematical representations. The classical biomolecules representations in-
clude 3D images of voxels, atoms or residues represented as point clouds, possibly with edges
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1.3. REPRESENTATION OF BIOMOLECULES

representing the chemical connectivity, coarse-grained representations, molecular surfaces or sim-
ply descriptors (see Figure 1.5). Which representation of biomolecules is the best for machine
learning ?

Figure 1.5 – The problem of choosing a representation exemplified on the modeling of a protein.
Chain A of pdb 1ycr can be represented as its residues or its atoms, connected or not, as well
as its surface

We will introduce and compare ways to represent each family of bio-molecules in a suitable
way for machine learning and provide example applications. Because these representations are
only a model, using one representation or the other is a matter of choice. This choice depends
on the volume of data at hand, the task at hand and the prior we want to inject in our model.
In their recent and timely work, ATOM 3D [Townshend et al., 2021] released a systematic
benchmark of tasks on molecules. They also started comparing graph-based, voxel-based and
equivariant methods. Several methods are still missing in this benchmark. To go further, models
blending several concurrent representations are still rare [Gligorijević et al., 2021] but a promising
direction to investigate.

1.3.1 DNA

Because of its stable double stranded helix structure, DNA is mainly represented as a 1D se-
quence. Therefore, the main machine learning models developed to functionally annotate usually
rely on sequence method techniques [Alipanahi et al., 2015]. There is however a symmetry in the
output of DNA sequencing : the sequencer will read both strands of the helix, yielding redundant
output. To leverage this symmetry, several methods were developed. We generalize them and
frame this redundancy in the equivariance framework in chapter 2. The 3D structure of DNA is
an expanding field of study with novel experimental methods like Hi-C [Lieberman-Aiden et al.,
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2009], and is a promising research direction.

1.3.2 RNA

RNA molecules have long been solely considered an intermediary messenger between DNA ge-
nomic information and protein structure. However, because only one strand is expressed, RNA
has a non-trivial folding process and is able to hold a variety of functions in cells. Actually, a
fraction (∼2% [Collins et al., 2004; Ezkurdia et al., 2014]) of it is translated into proteins, while
the rest only holds a functional role. For this reason, it holds huge promise for drug discovery as
it represents numerous novel targets [Warner et al., 2018]. RNA is however considered a more
challenging target than proteins because of its more flexible structure. This greater flexibility
disrupts the traditional pocket pipeline and also makes the structure resolution more challeng-
ing, resulting in a lot less data available (∼1.9k structures as opposed to ∼160k protein structure
in the PDB [Berman et al., 2000]).

Traditional machine learning was used on RNA with feature vectors for a long time [Brouard
et al., 2016; Kim et al., 2006]. The data sparsity makes the use of deep learning methods less
amenable. One possible solution is to use transfer learning and to pretrain an RNA model on
protein data, a solution very recently investigated in [Möller et al., 2022]. Another one is to
use a representation with a strong inductive prior. In base-pairing networks, nodes represent
nucleotides and the edges represent the interaction between two nucleotides, either backbone or
the traditional base pair. These networks define the secondary structures of RNA and folding al-
gorithms infer such connectivity from sequence [Gruber et al., 2008]. Base-pairing networks were
used as features for machine learning [Maticzka et al., 2014; Uhl et al., 2019]. Actually, to rep-
resent the full 3D structure of an RNA molecule in a coarsened way, biochemists have extended
these graphs with 12 categories of non canonical base-pairs [Leontis et al., 2002; Stombaugh
et al., 2009]. This 2.5D graph representation also includes a domain-knowledge prior, that can
be paired with the use of graph neural networks. In RNAmigos (chapter 3), we showed that
this representation increases performance compared to canonical graphs. We then leveraged
this representation to mine structural motifs in Vernal (chapter 4) and released a library called
RNAGlib (Chapter 5) that promotes the use of this representation for Machine Learning tasks
using graph neural networks.

1.3.3 Proteins

Proteins are the biomolecules whose structures were most studied. This is especially true of
the two protein families of enzymes and receptors. These families are the main drug targets of
existing drugs [Hughes et al., 2011]. Proteins have a relatively stable structure - despite having
some more deformable parts that are often the functional sites [Grünberg et al., 2006]. For this
reason, structural data is most abundant for this class of molecules, along with machine learning
approaches.

However, the most efficient way to represent a protein is still an open question. The frame-
work that we found to be the most successful for our applications was the Volumetric CNN one,
introduced in Jiménez et al. [2017]. This framework represents data on a 3D grid by Gaussian
interpolation, and then leverages standard 3D convolution. It is a popular framework and was
used in several works [Skalic et al., 2019c; Stepniewska-Dziubinska et al., 2020]. This is the
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1.3. REPRESENTATION OF BIOMOLECULES

one we used for instance in InDeep (Chapter 6). This framework is not rotation equivariant by
design, but approximate equivariance can be obtained from rotational augmentation.

Rotation equivariant networks are appealing for learning on structures represented in an ar-
bitrary basis. However, as mentioned above, their computational limitations have limited their
use on whole structures. There is an interesting usage of equivariant networks to represent bind-
ing pockets efficiently [Simonovsky and Meyers, 2020]. New equivariant methods are developed
at a very rapid pace and some recent methods were successful on specific tasks on the structure
of proteins [Stärk et al., 2022]. We can envision that equivariant networks practical limitations
will be alleviated in the future with improvements in the methods as well as in the computing
power available.

Graphs can also be used to represent a protein’s connectivity. The nodes represent either the
residues [Fout et al., 2017; Torng and Altman, 2019] or the atoms directly [Townshend et al.,
2019], and the edges represent chemical bonds and distances. A limitation of these methods is
that general graphs do not incorporate the notion of angles directly - even though a complete
graph obviously encodes the geometry implicitly. This limitation disappears with the formalism
of graphs embedded in 3D with an equivariant message passing scheme [Fuchs et al., 2020;
Satorras et al., 2021], with no known applications to learning on proteins.

Finally surface methods are promising as they naturally encode the rotational invariance
prior. They also encode the screening effect : atomic potentials decay at least as r−6, making
the interaction of buried residues with potential partners negligible compared with the surface
residues. This representation was very successfully applied to protein data [Gainza et al., 2020;
Sverrisson et al., 2021]. We believe the main obstacle to their adoption is the involved formalism
of the manifolds and the lack of easy to use methods.

All of these representations are concurrent valid representations. In our experiments, despite
their theoretical limitations, Volumetric CNNs have performed very well. We have repeatedly
tried to leverage rotation equivariant networks to encode the rotational invariance prior, with
little success. These findings were confirmed recently by ATOM 3D [Townshend et al., 2021].
They empirically find that for machine learning tasks on proteins, the best representation are
either graph methods - for tasks with few data - or the volumetric approach - for tasks with
more abundant data. They also report disappointing performance of equivariant methods both
in terms of accuracy and computing time and argue that these methods are more suited to
deal with small objects than full size proteins, also for memory issues. We believe that this
benchmark lacks surface methods and are working on including them.

1.3.4 Small molecules

In the context of drug discovery, small molecules refer to compounds made of organic atoms that
follow certain rules that make them potential drugs. The data available for small molecules is a
bit different in nature as the one previously mentioned. First of all, it can be built from enumer-
ation of those rules, generating a whopping 1023∼1060 compounds estimated druggable chemical
space [Bohacek et al., 1996; Ertl, 2003; Polishchuk et al., 2013]. Moreover, 3D conformations of
small compounds can be efficiently generated in-silico, making available a tremendous number
of drug-like structures.

For this reason, machine learning has been used to predict small molecules properties for a
long time. A plethora of traditional feature vectors were developed to represent molecules for

15



CHAPTER 1. INTRODUCTION

machine learning [Durant et al., 2002; Glen et al., 2006; Rogers and Hahn, 2010]. These feature
vectors are often deemed as molecular fingerprints and encode the presence or absence of given
chemical groups.

This community has pioneered the use of geometric deep learning, introducing graph con-
volutional networks in a research stream independent from the geometric deep learning stream
[Duvenaud et al., 2015]. Small molecules applications have also motivated a lot of the equivariant
literature [Anderson et al., 2019; Thomas et al., 2018] and are pinned by Atom 3D as the main
successful field of application of equivariant networks for molecular data. Several representations
of the raw data can be used in machine learning with an increasing level of complexity, using
a SMILES-like 1D string representation [Krenn et al., 2019; Weininger, 1988], the very classical
molecular graph [Jiang et al., 2021; Kearnes et al., 2016], graphs embedded in 3D [Schütt et al.,
2017] or the 3D atom positions of a given conformation [Thomas et al., 2018]. A review of these
representations for learning was published very recently [Atz et al., 2021].

Finally, the abundance of data was leveraged successfully by unsupervised models, follow-
ing the seminal Gómez-Bombarelli et al. [2018]. The goal of these papers is to learn a vector
representation from the large quantity of data represented in a certain way. This learnt repre-
sentation can then be used for other tasks, such as optimization. These papers rely on generative
models, usually auto-encoders : an encoder network maps an input onto a vector space and a
decoder network maps the vector back to the input space. The networks are trained to minimize
the reconstruction error. These methods were originally applied for textual applications and
so the first methods to apply it on molecules chose string molecular representations. However
not all decoded strings are valid molecules, motivating the introduction of decoder constrained
by syntactic rules [Dai et al., 2018; Kusner et al., 2017] and of SELFIES, a syntax where all
generated strings are valid molecules [Krenn et al., 2019]. Some more recent methods are based
on graphs [Jin et al., 2018a, 2020b] which benefit from a more efficient encoding, but graph
decoding is not yet fully established despite great improvements in recent years. In OptiMol
(chapter 8), we advocate for graph encoding and SELFIES decoding, taking the best of both
worlds. Recent methods are based on chemical synthetic pathways [Gao et al., 2021], to avoid
generating compounds that are not synthesizable, a known caveat of existing methods [Gao and
Coley, 2020].

1.3.5 Molecules should not be represented as static objects.

The aforementioned methods mention molecules as objects that have a structure beyond vectors.
They all consider these objects as one static object, such as the output of a crystallographic
experiment. However, biomolecules are actually dynamic, meaning that each molecule constantly
interacts with its neighborhood and changes shape. The most classical depiction of the dynamic
nature is based on sampling conformations - a set of representative states of the molecule. An
average of the property of each conformation robustly estimates the molecule’s property. The
most common method to get these sample conformations is Molecular Dynamics (MD). This
method is based on integration of Newton’s law of motion with force fields and has been the focus
of thousands of papers [Abraham et al., 2015; Brooks et al., 2009; Case et al., 2005; Humphrey
et al., 1996]. It is computationally expensive for large systems, and other methods based on
Markov chain Monte Carlo can be used to get the samples for big systems [Alber et al., 2008].
Finding a set of conformations to obtain an accurate and unbiased estimate of a given molecule’s
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property is still an open problem.

The static representation being more simple and tractable, it has been overwhelmingly domi-
nant in the machine learning papers. However, several papers have used machine learning models
on each snapshot of a dynamic [Kozlovskii and Popov, 2020]. Moreover one can learn over this
set of conformations using frameworks like multi-instance learning [Ilse et al., 2018]. This was
pioneered in two recent papers, for small molecules [Zankov et al., 2021] and protein structures
[Wu et al., 2022] but a more extensive investigation is promising.

Depending on the application, one might want to be sensitive or robust to a change in con-
formation. Intrinsic surface methods are isometry invariant, meaning that some deformations of
the surface do not affect their outputs. Thus, surface representations could be more suitable for
applications where we seek robustness with regards to conformation, whereas other representa-
tions using 3D spatial convolutions might be more sensitive.

We see that for each family of molecules, there are several possible representations that en-
code different priors and provide different properties of stability and performance to our models.
Using several different representations with an ensemble of models or even a hybrid model that
would leverage all of them is a promising direction. We note that the best representation can
only be defined as the most useful for each specific task. We hope that general properties make
the use of certain models more relevant than others overall, but our choices and conclusions
ultimately depend on the puzzles we try to solve.

1.4 Application to drug discovery

We have chosen drug discovery as the main application of our methods. AI-augmented drug
discovery is a major research direction, with existing success stories [Stokes et al., 2020; Zha-
voronkov et al., 2019]. Major efforts have been put into ligand-centric approaches leveraging
generative models. We however believe that with the development of geometric methods, learn-
ing methods are now ready to take into account the structure of targets and to revolutionize
structure-based approaches.

Central to the structure-based drug discovery approach is the concept of binding pockets. A
binding pocket is a region of the surface of a biomolecule that can interact with a ligand. Such
a region is said to be ligandable. Moreover, to be a site of interest, this binding should result in
a biological effect [Pérot et al., 2010]. A given site that checks both of these conditions is said
to be druggable. The structure-based pipeline can be decomposed in two main steps of finding
a pocket promising to be druggable and then finding promising compounds for this pocket.

1.4.1 Finding binding pockets

The task of finding binding pockets given a protein structure has a long history with computa-
tional chemistry with geometric methods like fpocket [Guilloux et al., 2009] being a classic in
the field. Then other tools also try to assess the druggability of these pockets by giving them
a score, with programs such as VolSite [Desaphy et al., 2012]. More recently, this problem was
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approached with structured machine learning methods, like DeepSite [Jiménez et al., 2017] and
many follow-ups [Kozlovskii and Popov, 2020; Mylonas et al., 2021; Stepniewska-Dziubinska
et al., 2020].

However these methods are restricted to finding conventional pockets - e.g. enzymes and
receptors binding sites. In the field of drug discovery, there is a need to investigate the drugga-
bility of other pockets to have new targets and thus search new regions of the chemical space
for potential drugs. Two big avenues for this process of expanding targets are Protein-Protein
Interaction (PPI) sites and RNA. As mentioned above, only a fraction of RNA is translated into
proteins, making potential RNA targets numerous. Moreover, a different chemistry - articulated
around RNA base pairing, riboses, and negatively charged phosphate groups - governs RNA
pockets’ microenvironments. Future RNA drugs are thus anticipated to be different from the
patented chemical space. RNA targeted drug discovery is still in its infancy, with only one FDA
approved drug targeting RNA. Thus, still only a few methods try to find RNA binding pockets
[Möller et al., 2022; Su et al., 2021; Wang et al., 2018].

The other avenue for finding new targets is to look at PPI sites. Modulators of such sites
could either prevent an important binding - such as the one between ACE2 and the Spike Protein
- or stabilize one, disrupting a potential pathological pathway. To investigate the druggability of
such sites, one needs dedicated databases, such as the iPPI-DB [Torchet et al., 2021] and tools,
such as InDeep (chapter 6).

1.4.2 Estimating binding affinity

Once equipped with the structure of the target pocket, one wants to predict the affinity between
this pocket and a molecular compound. The overwhelmingly dominant approach for this task
is molecular docking [Amaro et al., 2018; Lang et al., 2009; Luo et al., 2019; Shoichet et al.,
2002; Trott and Olson, 2010], with millions of molecules routinely docked by pharmaceutical
companies and a long history of fine tuning these methods. They are based on a two-step process
of sampling poses of the ligand in the binding pocket and scoring these poses. The scoring step
uses various approaches such as force-field based, semi empirical or knowledge-based methods.
The main shortcomings of docking are its limited precision and high computational cost (∼1
minute per compound). Machine learning methods to estimate binding affinity from only the
structures of protein target and molecular compounds exist [Hoffmann et al., 2010; Stärk et al.,
2022], bypassing the pose sampling step. However they are not accurate enough yet to replace
the traditional two-step pipeline.

The main avenue to enhance the docking protocol is to better score the generated poses. To
take into account entropic, solvation and dissociation effects, Free Energy Perturbation (FEP)
methods use MD sampling and energy computations to get an molecular affinity estimate [Wang
et al., 2015]. Density Functional Theory (DFT) computations yield an even more accurate
estimation of molecular affinity, at the cost of an even harder computational burden [Hohenberg
and Kohn, 1964]. Another option is to learn a scoring function, training on bound structures
along with an affinity measure [Ballester and Mitchell, 2010; Jiménez et al., 2018]. The learnt
scoring function is then used to re-score the most promising poses, based on the native score.
Geometric deep learning was recently used for these scoring functions with superior results and
remains a very promising research direction [McNutt et al., 2021]. One of the inherent problems
is again the fact that the affinity is not a function of one pose but rather of the ensemble of
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poses. The current score aggregation functions often rely on the max function; we anticipate
that a great benefit could be obtained by using another aggregation function, following the
multi-instance learning framework [Ilse et al., 2018].

1.4.3 Finding the right compounds

To obtain an actual drug, one needs to find small molecules that exhibit a large set of specifica-
tions [Hughes et al., 2011]. The most obvious one is the binding affinity to our binding pocket,
because we want our compound to disrupt the functioning of our target. However there are a
lot of other factors to take into account. First of all, we need the molecule to be synthesizable
and affordable. Some chemical space regions are under patents, that need to be avoided to
find reasonable candidates for a new drug. Then we also need the drug to make its way to the
protein we are interested in, adding some membrane permeability and solubility constraints.
Finally we also need some specificity, to avoid its binding to other proteins and disrupting their
normal functioning, especially for functionally important ones like the hERG family [O’Brien,
2014; Sanguinetti and Tristani-Firouzi, 2006].

All of these objectives need to be jointly optimized, because failing on any of these levels will
cause the drug to malfunction, even with a high affinity. However there is no easy deterministic
way to estimate most of these properties. Quantitative Structure-Activity Relationship (QSAR)
models are the most common approach to solving this problem [Cherkasov et al., 2014]. They
are machine learning models that extrapolate the values of molecular properties from empirical
measurements on a limited set of molecules. Even affinity prediction can be formulated as a
QSAR task by creating a model trained on experimental affinity for each target, only implicitly
encoding the target information. Despite originally relying on molecular descriptors coupled
with linear regression, more complex machine learning models were developed in the last 30
years. These models are actually one of the motivations for the introduction of graph neural
networks [Duvenaud et al., 2015] and equivariant networks [Thomas et al., 2018]. Once we know
how to predict these objectives, they can be blended into a composite score that we want to
optimize.

Because of the noise of the experiments, the amount of factors to blend in and the limited
accuracy of the predictive models, the score that we compute is only a noisy estimate of the
drug-likelihood (see Figure 1.6). Therefore, we cannot suggest just one chemical compound and
the preferred approach is to suggest a list of compounds to try out. Wet-lab assays are well suited
to trying out a few hundreds of compounds (sometimes tens, sometimes thousands), which is
approximately the number of compounds we will try to offer. Moreover, because we believe that
similar compounds have a higher chance of having similar properties and thus to fail for a similar,
unexpected reason, we want our suggestion to be as diverse as possible : “The discovery of a
single, yet structurally novel, hit ligand can be much more beneficial and informative in the early
stages of a drug design project than the identification of many close analogues of a known ligand”
[Broccatelli and Brown, 2014]. We are then facing a conflicting objective : finding compounds
that are optimized with regards to the score and finding compounds that are diverse.

The classical way to fulfill these objectives is to use the scoring function to screen existing
databases and to retrieve the most promising with a constraint on diversity. A concurrent and
rising approach relies on the aforementioned unsupervised generative models, that are trained
to produce compounds similar to an existing database, the prior distribution. Such models
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Figure 1.6 – Schematic illustration of chemical optimization. The x-axis represents the chemical
space. Exact and computed Chemical Beauty (QED) and affinity values are plotted on the top,
with optimistic and pessimistic model errors. These two scores are then aggregated (summed)
into an example composite score.
This illustrates the difficulty of finding the right compounds. Let us imagine that our algorithm
returns all local maxima above the dotted gray line threshold of the estimated score. We
denote the results with full stars. Compounds B and D are satisfactory results. Compound A
is wrongly discarded because of our pessimistic QED estimation. Compound C is retained but
is an artifact resulting from our optimistic affinity evaluation. Compound E is selected because
of its high affinity, but has a forbidding chemical beauty of zero, showing the shortcomings of
the sum as a composite score. Some additional effects could exist that are not included in the
score and depicted in this illustration, for instance compound B and its vicinity could be lethal
for rats.
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represent compounds in a vector space, opening the door to continuous optimization [Gómez-
Bombarelli et al., 2018]. Several approaches were developed using direct optimization [Winter
et al., 2019a,b], adversarial methods [Prykhodko et al., 2019], reinforcement learning [Olivecrona
et al., 2017; You et al., 2018] or flow networks [Bengio et al., 2021]. Because the target based
oracle - docking or DFT - is computationally expensive, target structure inclusion is still rare
and needs special design (see [Skalic et al., 2019b] and chapter 8).

1.5 Contributions

We now introduce our work that follows the questions raised in this introduction. We start by
investigating methods and representations for learning on biomolecules. We apply the equivari-
ance framework to DNA sequences, to cope with the Reverse Complement symmetry in chapter
2. We show that representing RNA with the aforementioned 2.5D graphs yields superior ma-
chine learning performances in chapter 3. We then leverage this graph representation to mine
structural motifs in RNA in a flexible way in chapter 4 and package several tools and utilities
for this representation into a Pypi package in chapter 5.

We then apply structured machine learning methods to help drug discovery. This was already
started in chapter 3, where the task we aim to solve is to associate a pharmacophore to an RNA
binding pocket. In chapter 6, we address the druggability of PPI sites by detecting binding sites
and following these sites along MD trajectories. We also propose a GPU-based tool, quicksom,
to efficiently cluster MD trajectories and distribute it as another PyPi package in chapter 7.
Finally we offer a tool to generate optimized populations of molecular compounds with regards
to a user-defined, potentially costly score, compatible with docking simulations in chapter 8. We
summarize these contributions and detail the role played in each of them below.

1.5.1 RC-Equivariant Networks for DNA Sequences

In this paper we are interested in the problem of learning models over DNA, represented with
sequences. A translational symmetry prior in these sequences have motivated the extensive use
of CNNs. There is however another additional structure in DNA, resulting from the reverse-
complement symmetry. The two strands of DNA are paired deterministically so one can get the
content of one from the other. The sequencing results do not take that redundancy into account.

We frame this additional structure as a group action on the input and design equivariant
networks for DNA. We include a generality result, exposing all possible equivariant linear layers
and all equivariant point-wise linearities : the two main components of classical neural networks.
We then show how other existing methods can be framed as a subset of our framework. Finally
we implement our networks and show that enabling optimization over this larger functional
space yields better results.

This chapter was made in collaboration with Jean-Philippe Vert and was published in
NeurIPS 2021 [Mallet and Vert, 2021]. I was the first author in this paper. Jean Philippe
and I contributed equally to the theory and the writing and I implemented the networks and
conducted the experiments.
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1.5.2 Augmented base pairing networks encode RNA-small molecule binding prefer-
ences

In RNAmigos, we want to learn a model that associates a binding pocket to a pharmacophore of
its corresponding ligand. Our prediction can be used as a prefiltering tool for finding binders
in chemical libraries. We represent RNA binding sites as 2.5D graphs and use a graph neural
network model.

We show that our prediction places the true ligand in the 71st percentile in two decoy
libraries, showing a significant improvement over several baselines, and a state of the art method.
This shows that RNA binding data contains structural patterns with potential for drug discovery.
Furthermore, we observe that RNA 2.5D graphs are the only representation able to uncover
a significant signal, suggesting that they are the right representation for conducting machine
learning on RNA.

This chapter was made in collaboration with Carlos Oliver, Roman Sarrazin Gendron,
Vladimir Reinharz, William L Hamilton, Nicolas Moitessier, Jérôme Waldispühl and was pub-
lished in Nucleic Acid Research in 2020 [Oliver et al., 2020]. I was the second author in this paper.
I contributed to the idea of the project, implemented part of the experiments and contributed
to the writing.

1.5.3 VeRNAl: a tool for mining fuzzy network motifs in RNA

Motivated by the success of RNAmigos, we used graph neural networks to approximate the
feature map of a structural kernel, defined on RNA 2.5D subgraphs centered around nodes.
Then the dot product in this learnt representational space approximates the kernel, that in
turn approximates an RNA graph edit distance. This procedure thus maps structurally similar
nodes in the same regions of a high dimensional space. Embedding the graphs in this space, the
frequent substructures are now organized in clusters and larger frequent subgraphs appear in
the form of highly connected clusters. However, allowing the cluster to have a non zero spatial
extension, we allow for similar but non-isomorphic structures to be grouped together. We then
group together co-occurring clusters in an iterative process to discover larger motifs. We show
that our method allows us to rediscover and expand known structural motifs, as well as to mine
new fuzzy motifs.

This chapter was made in collaboration with Carlos Oliver, Pericles Philippopoulos, William
L Hamilton and Jérôme Waldispühl and was published in Bioinformatics in 2022 [Oliver et al.,
2022]. I was co-first author in this paper. We got the idea of the project together. Carlos con-
ducted most of the data pipeline while I did the meta-graph formalization and implementation.
We conducted the experiments and wrote together.

1.5.4 RNAglib: a python package for RNA 2.5 D graphs

Because our results advocated that RNA 2.5D graphs are a suitable representation for con-
ducting machine learning on RNA structures, we decided to release a database of RNA in this
representation with pre-annotation for machine learning tasks. We also developed, standardized
and documented our data processing tools and machine learning pipelines and released them in
the form of a package. This chapter was made in collaboration with Carlos Oliver, Jonathan
Broadbent, William L Hamilton and Jérôme Waldispühl and was published in Bioinformatics
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Application Notes in 2022 [Mallet et al., 2022b]. I was co-first author in this paper. Carlos
and Johnathan conducted most of the data pipeline and I did the learning and documentation
packaging.

1.5.5 InDeep: 3D fully convolutional neural networks to assist in silico drug design on
protein–protein interactions

InDeep serves a more applied purpose : the automatic detection of binding pockets at PPI sites.
We used a joint model that predicts both the interaction and the ligandable sites, from a protein
structure. This model was trained on PPI modulators on a dedicated database - iPPI-DB - and
its output was postprocessed with a dedicated procedure. The architecture and post-processing
were optimized using automatic model optimization in collaboration with IBM research.

We show that the resulting model is competitive even on classic ligands and far more accurate
on these PPI modulators. Moreover, we can track the ligandability along an MD trajectory and
show the model identifies favorable conformations. Finally the tool ships with a visualization
plugin in PyMol to ease its adoption by biochemists.

This chapter was made in collaboration with Luis Checa Ruano, Alexandra Moine Franel,
Michael Nilges, Karen Druart, Guillaume Bouvier and Olivier Sperandio and was published in
Bioinformatics, 2022 [Mallet et al., 2022a]. I was the first author in this paper. Guillaume and
Olivier launched the project. Karen conducted most of the data pipeline. I implemented most
of the project helped by Guillaume and improved the architecture and training procedure. We
conducted the validation experiments also with the help of Luis. We wrote together.

1.5.6 quicksom: Self-Organizing Maps on GPUs for clustering of molecular dynamics
trajectories

A few years ago, a tool based on SOMs to cluster molecular dynamics was released. In quicksom,
we expanded this tool a lot, offering GPU support as well as enhanced data loading. This enables
faster computation time and better scaling properties. We benchmark this version of the code
against other implementations and show it is state of the art. After publication, we kept pushing
this tool by offering a Jax [Bradbury et al., 2018] support. This chapter was made in collaboration
with Michael Nilges and Guillaume Bouvier and was published in Bioinformatics Application
Notes in 2021 [Mallet et al., 2021]. I was the first author in this paper. I implemented the
method and packaged it. Guillaume helped with the experiments. We wrote together.

1.5.7 OptiMol: Optimization of Binding Affinities in Chemical Space for Drug Dis-
covery

OptiMol aims at generating optimized populations of small-molecules compounds, as described
in the drug discovery section. We introduced a new graph to SELFIES generative model for
small-molecules. We formulated the problem of finding diverse and optimized compounds as
a statistical conditioning of a prior distribution on higher and higher values of the property.
This enabled us to leverage a statistical framework based on iterated updates, that can take
advantage of a computational cluster. Therefore OptiMol can be used even if the score to
optimize is computationally expensive to compute, as is the case for docking scores.
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We showed our generative model to be more computationally efficient than existing methods.
We also show that OptiMol is successful at biasing the prior distribution towards high predicted
affinity compounds while remaining tractable. We moreover show that the tool can optimize a
multi objective score beyond affinity.

This chapter was made in collaboration with Jacques Boitreaud, Carlos Oliver and Jerome
Waldispuhl and was published in the Journal of Chemical Information and Modeling in 2020
[Boitreaud et al., 2020]. I was co-first author in this paper. We got the idea and the formalization
of the project together. Jacques implemented most parts about the generative model while I
did the optimization parts. We conducted the experiments and wrote together.
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Reverse-Complement Equivariant Networks
for DNA Sequences

This chapter was made in collaboration with Jean-Philippe Vert and was published in NeurIPS
2021 [Mallet and Vert, 2021].
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CHAPTER 2. RC-EQUIVARIANT NETWORKS FOR DNA SEQUENCES

Abstract

As DNA sequencing technologies keep improving in scale and cost, there is a growing need
to develop machine learning models to analyze DNA sequences, e.g., to decipher regulatory
signals from DNA fragments bound by a particular protein of interest. As a double helix
made of two complementary strands, a DNA fragment can be sequenced as two equivalent,
so-called Reverse Complement (RC) sequences of nucleotides. To take into account this
inherent symmetry of the data in machine learning models can facilitate learning. In this
sense, several authors have recently proposed particular RC-equivariant convolutional neural
networks (CNNs). However, it remains unknown whether other RC-equivariant architectures
exist, which could potentially increase the set of basic models adapted to DNA sequences for
practitioners. Here, we close this gap by characterizing the set of all linear RC-equivariant
layers, and show in particular that new architectures exist beyond the ones already explored.
We further discuss RC-equivariant pointwise nonlinearities adapted to different architectures,
as well as RC-equivariant embeddings of k-mers as an alternative to one-hot encoding of
nucleotides. We show experimentally that the new architectures can outperform existing
ones.

Résumé

Avec les avancées en termes de coût et d’efficacité des méthodes de séquençage ADN, il
y a un besoin croissant de méthodes dédiées à l’analyse de ces données, par exemple pour
déchiffrer les signaux contenus dans une séquence ADN qui se lie à une protéine d’intérêt.
Du fait de sa structure en double hélice, faite de deux brins complémentaires, un fragment
d’ADN donne lieu à deux résultats de séquençage aux contenus équivalents, appelés des
Compléments Inverses (CI). La prise en compte de cette symétrie par les modèles d’appren-
tissage automatique favorise leur entrâınement. Plusieurs papiers ont récemment proposés
certains réseaux convolutionnels CI-équivariants. Il n’existe pas pour l’instant de résultats
sur l’existence d’autres réseaux respectant cette symétrie. Nous dérivons un tel résultat en
caractérisant toutes les couches linéaires CI-équivariantes, qui englobent mais dépassent les
couches existantes. Nous caractérisons aussi les non-linéarités ponctuelles CI-équivariantes
et des représentations par k-mers CI-équivariantes pour les séquences de nucléotides. En-
fin, nous montrons expérimentalement que ces architectures peuvent donner de meilleurs
résultats que les architectures existantes.
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2.1 Introduction

Incorporating prior knowledge about the structure of data in the architecture of neural networks
is a promising approach to design expressive models with good generalization properties. In
particular, exploiting natural symmetries in the data can lead to models with fewer parameters
to estimate than agnostic approaches. This is especially beneficial when the amount of available
data is limited. A famous example of such an architecture is the convolutional neural network
(CNN) for 1D sequences or 2D images, which is well adapted to problems which are invariant
to translations in the data, while exploiting multiscale and local information in the signals.
Motivated by the success of CNNs, there has been a fast-growing body of research in recent
years to build the theoretical underpinnings and design architectures and efficient algorithms to
systematically exploit symmetries and structures in the data [Bronstein et al., 2021].

A central idea that has emerged is to formalize the symmetries in data by a particular group
action (e.g., the group of translations or rotations on images), and to create multilayer neural
networks which, by design, “behave well”under the action of the group. This is captured formally
by the concept of equivariance, which states that each equivariant layer should be designed to
be subject to the group action (e.g., we should be able to ”translate” or ”rotate” the signal in
each layer), and that when an input data is transformed by a particular group element, then its
representation in an equivariant layer should also be transformed according to the same group
element. While it is easy to see that convolutional layers in CNNs are equivariant to translations,
Cohen and Welling [2016] formalized the concept of group equivariance CNN (G-CNN) for more
general groups and showed in particular how to design convolutional layers equivariant not only
to translations but also to reflections and to a discrete set of rotations. Following this seminal
work, the theoretical foundations of group equivariant neural networks were then expanded,
going beyond regular representations [Cohen and Welling, 2017], for more groups [Anderson
et al., 2019; Hoogeboom et al., 2018; Thomas et al., 2018; Weiler et al., 2018a], in less regular
spaces [Cohen et al., 2019a, 2018] or with more general results on their generality and universality
[Cohen et al., 2019b; Dym and Maron, 2020; Esteves, 2020; Kondor and Trivedi, 2018]. The
main applications were developed with the groups of rotations in 2D and 3D, mostly to computer
vision problems, but also in biology with histopathology [Graham et al., 2020; Lafarge et al.,
2021], medicine [Winkels and Cohen, 2019] and quantum chemistry [Schütt et al., 2021].

In this paper, we explore and study the potential benefits of equivariant architectures for an
important class of data, namely deoxyribonucleic acid (DNA) sequences. DNA is the major form
of genetic material in most organisms, from bacteria to mammals, which encodes in particular
all proteins that a cell can produce and which is transmitted from generation to generation.
The study of DNA in humans and various organisms has led to tremendous progress in biology
and medicine since the 1970s, when the first DNA sequencing technologies were invented, and
the collapsing cost of sequencing in the last twenty years has accelerated the production of
DNA sequences: there are for example about 2.8 billion sequences for a total length of ∼ 1013

nucleotides publicly available at the European Nucleotide Archive (ENA1). Unsurprisingly in
such a data-rich field, machine learning-based approaches are increasingly used to analyze DNA
sequences, e.g., in metagenomics to automatically predict the species present in an environment
from randomly sequenced DNA fragments [Liang et al., 2020; Menegaux and Vert, 2019; Tampuu
et al., 2019; Vervier et al., 2016] and to detect the presence of viral DNA in human samples

1As of May, 2021: https://www.ebi.ac.uk/ena
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[Tampuu et al., 2019], in functional genomics to predict the presence of protein binding sites or
other regulatory elements in DNA sequences of interest [Ghandi et al., 2014; Lee et al., 2015a;
Oubounyt et al., 2019; Stormo, 2000; Zeng et al., 2016; Zhang et al., 2019], to predict epigenetic
modifications [Levy et al., 2020], or to predict the effect of variations in the DNA sequence on
a phenotype of interest [Alipanahi et al., 2015; Zhou and Troyanskaya, 2015].

Due to the sequential nature of DNA and the translation-equivariant nature of the ques-
tions addressed, many of these works are based on 1D CNN architectures, although recently
transformer-based language models have also shown promising results on various tasks [Clauwaert
and Waegeman, 2021; Ji et al., 2021; Zaheer et al., 2020]. However, besides translation, DNA
has an additional fundamental symmetry that has been largely ignored so far: the so-called
reverse complement (RC) symmetry, due to the fact that DNA is made of two strands oriented
in opposite directions and encoding complementary nucleotides. In other words, a given DNA
segment can be sequenced as two RC DNA sequences, depending on which strand is sequenced;
any predictive model for, e.g., DNA sequence classification should therefore be RC-invariant,
which calls for RC-equivariant architectures. While strategies based on data augmentation and
prediction averaging has been commonly used to handle the need for RC invariance [Alipanahi
et al., 2015; Quang and Xie, 2019], one translation- and RC-equivariant CNN architecture has
been proposed and led to promising results [Brown and Lunter, 2019; Onimaru et al., 2020;
Shrikumar et al., 2017]. However, it remains unclear whether that architecture is the only one
that can encode translation- and RC-equivariance, or if alternative models exist to complement
the toolbox of users wishing to develop deep learning models for DNA sequences.

Using the general theory of equivariant representations, in particular steerable CNNs [Cohen
and Welling, 2017], we answer that question by characterizing the set of all linear translation-
and RC-equivariant layers. We show in particular that new architectures exist beyond the ones
already explored by [Brown and Lunter, 2019; Onimaru et al., 2020; Shrikumar et al., 2017],
which in the language of equivariant CNNs only make use of the regular representation [Co-
hen and Welling, 2016] while more general representations lead to different layers. We further
discuss RC-equivariant pointwise nonlinearities adapted to different representations, as well as
RC-equivariant embeddings of k-mers as an alternative to one-hot encoding of nucleotides. We
test the new architecture on several protein binding prediction problems, and show experimen-
tally that the new models can outperform existing ones, confirming the potential benefit of
exploring the full set of RC-equivariant layers when manipulating DNA sequences with deep
neural networks.

2.2 Methods

2.2.1 Group action of translation and reverse complementarity on DNA sequence

DNA is a long polymer made of two intertwined strands, forming the well-known double-helical
structure. Each strand is a non-symmetric polymer that can be described as an oriented chain of
four possible monomers called nucleotides and denoted respectively {A, C, G, T}. The two strands
are oriented in opposite directions, and their nucleotides face each other to form hydrogen bonds.
They interact at each position in a deterministic way because only two nucleotides pairings can
happen: (A,T) and (G,C). Thus, given a nucleotide sequence on one strand, we can deduce
the so-called RC sequence of its corresponding strand by complementing each nucleotide and
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Figure 2.1 – Illustration of the reverse-complement symmetry. Both DNA strands get sequenced
in opposite directions resulting in redundant information.

reversing the order (Figure 2.1). When a double-stranded DNA fragment is sequenced, the
two strands are first separated and, typically, only one of them is randomly selected and is
decrypted by the machine. This implies that any given DNA fragment can be equivalently
described by two RC sequences of nucleotides. Moreover, several genomic learning tasks amount
to a sequence annotation that does not depend on the strand. For example, a protein can bind
a double-stranded DNA fragment, and both strands of the bound part can get sequenced. This
motivates the search for equivariance to this RC-action for the prediction functions. Moreover,
the sequencing often results in long sequences where the relevant parts of the sequence do not
correlate with their position. The task of prediction over genomic sequences is thus largely
translation equivariant, which explains why the community settled on the use of CNNs to train
and predict on arbitrary length segments.

To formalize mathematically the translation and RC operations on DNA sequences, we first
encode the raw genetic sequence as a signal function in F0 =

{
f : Z −→ {0, 1}4

}
, as the one hot

encoding of the nucleotide content for each integer position. Because of the finite length of this
polymer, we assume that beyond a compact support this function takes a constant value of zero.
The group (Z,+) of translations acts naturally on this encoding by Tu(f)(x) = f(x − u), for a
translation u ∈ Z, and the RC operations amounts to the following : RC(f)(x) = σ(−1)[f(−x)],
where σ(−1) is the 4× 4 permutation matrix that exchanges complementary bases A/T and C/G
(while we denote by σ(1) the 4× 4 identity matrix). We notice that RC is a linear operation on
F0 that satisfies RC2 = I, and thus that the RC operation is a group representation on F0 for
the group Z2 = {1,−1} endowed with multiplication.

To jointly consider translations and RC actions, we naturally consider the semi-direct product
group G = Z o Z2. Elements g ∈ G can be written as g = ts with t ∈ Z, s ∈ Z2 and the group
G acts on F0 by the action π0 defined by:

∀ts ∈ G , ∀(f, x) ∈ F0 × Z ,
(
π0(ts)f

)
(x) = σ(s)[f(s(x− t))] .

In other words, π0 is the representation of G on F0 induced by the representation σ of RC on
R4 [Cohen and Welling, 2017].

2.2.2 Features spaces of equivariant layers

Let us now describe the structure of intermediate layers of a neural network equivariant to
translations and RC. Following the theory of steerable CNNs [Cohen and Welling, 2017], we
consider successive representations of the input DNA sequence in the following way:
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Definition 1. Given ρ a representation of Z2 on RD for some D ∈ N∗, a ρ-feature space is the set
of signals F = {f : Z −→ RD} endowed with the G group action π, known as the representation
induced by ρ :

∀ts ∈ G , ∀(f, x) ∈ F × Z ,
(
π(ts)f

)
(x) = ρ(s)[f(s(x− t))] . (2.1)

With this definition, we see in particular that the one-hot encoding input layer maps the
input DNA sequence to a σ-feature space, and that the dimension (i.e., number of channels
in the language of deep learning) and group action of ρ-feature space are fully characterized
by the representation ρ. Interestingly, the theory of linear group representations allows us to
characterize more precisely all such representations:

Theorem 1. For any representation ρ of Z2 on RD, there exist a, b ∈ N such that a+ b = D and
an invertible matrix P ∈ GL(RD) such that

∀s ∈ Z2 , ρ(s) = P Diag(Ia, sIb)P
−1 .

In other words, combining Definition 1 and Theorem 1, we see that any ρ-feature space that
we will use to build translation- and RC-equivariant layers is fully characterized by a triplet
(P, a, b), which we call its type, and which characterizes both its dimension D = a + b and the
action of the group G by (2.1). By slight abuse of language, we also refer to (P, a, b) as the type
of ρ.

Theorem 1 is a standard result of group theory, which explicits the decomposition of any
representation ρ in terms of so-called irreducible representation, or irreps. In the case of Z2,
there are exactly two irreps which act on R, namely, ρ1(s) = 1 and ρ−1(s) = s. If ρ has type
(P, a, b), then it means that it can be decomposed as a times ρ1(s) and b times ρ−1(s). In the
particular case where P is the identity matrix, i.e., when we consider a type (I, a, b), then ρ(s)
is a diagonal matrix for any s ∈ Z2, and each channel of F is acted upon by a single irrep. In
that case, we will call the channels of type ”1” (resp. ”-1”) if they are acted upon by ρ1 (resp.
ρ−1), and we will say that F is an ”irrep feature space”.

Now, let us introduce another special case. Since Z2 is finite of cardinality 2, let us consider
the regular representation ρreg of Z2 on R2 defined by:

ρreg(1) =

(
1 0
0 1

)
, ρreg(−1) =

(
0 1
1 0

)
.

One can easily check that ρreg is of type (Preg, 1, 1), where Preg =

(
1 1
1 −1

)
. It corresponds

to a ρ-feature space with two channels, where the RC operations flips the two channels (and of
course the sequence coordinates).

Let us now consider feature spaces of interest. In the input layer, nucleotides are one-hot
encoded in a certain order, let us say (A, T, G, C). As stated above, this input space is acted upon
by σ, a 2−cycle that swaps bases A/T and C/G. We see that we can rewrite σ = (ρreg ⊕ ρreg) :=
(ρ⊕2
reg), where ⊕ is the bloc-diagonal operation. Because ρreg is of type (Preg, 1, 1), we can

diagonalize σ with (P⊕2
reg) and the diagonal would be alternated +1 and -1 values. Thus, there

exists a permutation Π such that σ is of type (P, 2, 2), with P = Π(P⊕2
reg)Π

−1. These concepts
are illustrated in Supplementary Section B.1
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Interestingly, all RC-equivariant layers proposed so far in [Brown and Lunter, 2019; Onimaru
et al., 2020; Shrikumar et al., 2017] follow a similar pattern: the channels go by pair, and the
RC action amounts to flipping the channel values within a pair and reversing the sequence
coordinates. In our formalism, this corresponds to channels of type (P, a, a), where a ∈ N∗ is the
number of pairs of channels, and where up to a permutation of channels the matrix P satisfies
P = Π(P⊕areg)Π

−1. Following [Shrikumar et al., 2017], we will refer to these layers as Reverse
Complement Parameter Sharing (RCPS) layers below.

This highlights the fact that translation- and RC-equivariant layers explored so far are equiv-
ariant according to Definition 1, but that there exists potentially many other equivariant layers,
obtained in particular by allowing ρ-feature spaces of types (P, a, b) where a 6= b, on the one
hand, and where P is not a direct sum of Preg, on the other hand. We investigate such variants
below.

2.2.3 Equivariant linear layers

While Definition 1 characterizes ρ-feature space in terms of structure and group action, an
equivariant multilayer neural network is built by stacking ρ-feature spaces on top of each other
and connecting them with equivariant layers. Cohen et al. [2019b, Theorem 2] gives us a general
result about such equivariant mappings. Here, we apply this result to our specific data and group,
and characterize the class of equivariant linear layers, i.e., the linear functions φ : Fn → Fn+1

that satisfy πn+1φ = φπn, where πn and πn+1 are respectively the group action on Fn and Fn+1.

Theorem 2. Given two representations ρn and ρn+1 of Z2, of respective types (Pn, an, bn) and
(Pn+1, an+1, bn+1) with an + bn = Dn and an+1 + bn+1 = Dn+1, and respective ρn- and ρn+1-
feature spaces Fn and Fn+1, a linear map φ : Fn → Fn+1 is equivariant if and only if it can be
written as a convolution:

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

κ(y − x)f(y) , (2.2)

where the kernel κ : Z→ RDn+1×Dn satisfies:

∀x ∈ Z , κ(−x) = ρn+1(−1)κ(x)ρn(−1) , (2.3)

or equivalently:

∀x ∈ Z , κ(x) = Pn+1

(
α(x) β(x)
γ(x) δ(x)

)
P−1
n , (2.4)

where α : Z → Ran+1×an and δ : Z → Rbn+1×bn are even, while β : Z → Ran+1×bn and γ : Z →
Rbn+1×an are odd functions.

As stated in Cohen et al. [2019b], ”Convolution is all you need” to define linear layers which
are equivariant to our group. In addition, Theorem 2 characterizes all the convolution kernels
that ensure equivariance through the two equivalent constraints (2.3) and (2.4).

To illustrate this result, let us consider two RCPS feature spaces Fn and Fn+1 of respective
types (Πn(P⊕anreg )Π−1

n , an, an) and (Πn+1(P
⊕an+1
reg )Π−1

n+1, an+1, an+1). Then, the channels in Fn
and Fn+1 go by pair, and if we consider a slice κ̃ : Z → R2×2 of the convolution kernel κ
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describing how a pair of channels in Fn maps to a pair of channels in Fn+1, (2.3) gives the
constraint:

κ̃(−x) :=

(
κ̃11(−x) κ̃12(−x)
κ̃21(−x) κ̃22(−x)

)
=

(
0 1
1 0

)
κ̃(x)

(
0 1
1 0

)
=

(
κ̃22(x) κ̃21(x)
κ̃12(x) κ̃11(x)

)
.

We recover exactly the constraints of the RCPS filters first proposed by [Shrikumar et al.,
2017], proving as a consequence of Theorem 2 that RCPS convolution filters describe exactly all
equivariant linear mappings between RCPS feature spaces.

Moreover, if we now consider any two feature spaces Fn and Fn+1 of respective types
(Pn, an, bn) and (Pn+1, an+1, bn+1), then Equation (2.4) tells us that up to multiplications by
matrices Pn+1 and P−1

n , the kernel is expressed in terms of even and odd functions, which can
be trivially implemented with parameter sharing. For example, to represent the even function α,
one just needs to parameterize the values of α(x) for x ≥ 0, and complete the negative values by
parameter sharing α(−x) = α(x). Hence, the parameter sharing idea used in RCPS [Shrikumar
et al., 2017] extends to any equivariant linear map.

Instead of using (2.4) to parameterize equivariant convolution kernels, one may also directly
write the constraints (2.3) for specific representations, and potentially save the need of multi-
plication by Pn+1 and P−1

n in (2.4). This is for example the case in RCPS layers [Shrikumar
et al., 2017], and more generally for channels acted upon by the regular representation; for the
sake of completeness, we derive in Appendix B.4 the constraints to go from and to the regular
representation or the irreps, and use them in our implementation.

2.2.4 Equivariant nonlinear layers

Besides equivariant linear layers, a crucial component needed for multilayer neural networks
is the possibility to have equivariant nonlinear layers, such as nonlinear pointwise activation
functions or batch normalization [Ioffe and Szegedy, 2015]. In this section, we discuss particular
nonlinearities that are adapted to various equivariant layers.

Pointwise activations. Let us begin with pointwise transformations, that encompass most acti-
vation functions used in deep learning. Pointwise transformations are formally defined as follows:
given a function θ : R→ R and a vector space V = RA for some index set A, the pointwise exten-
sion of θ to V is the mapping θ̄V : V → V defined by θ̄V (f)(a) = θ (f(a)), for any (f, a) ∈ V ×A.
For a D-dimensional representation ρ of Z2 and a ρ-feature space F with G-group action π, we
say that a pointwise extension θ̄F : F → F is equivariant if it commutes with π, i.e., πθ̄F = θ̄Fπ.
By definition of the group action (2.1), this is equivalent to saying that the pointwise extension
θ̄RD of θ to RD commutes with ρ. The following theorem gives an exhaustive characterization
of a large class of equivariant pointwise extensions for any ρ-feature space:

Theorem 3. Let ρ be a representation of Z2 and θ : R → R be a continuous function with left
and right derivatives at 0. Let F be a ρ-layer and θ̄F : F → F be the point-wise extension of θ
on this layer. Then θ̄F is equivariant if and only if at least one of the following cases holds:

1. θ is a linear function.

2. θ is an affine function, and ρ(−1)1 = 1.
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3. θ is not an affine function, and there exists a permutation matrix Π, integers a, b, c, d ∈ N,
and scalars (λ1, . . . , λa) ∈ (R∗+)a, such that ρ decomposes as

Π−1ρ(−1)Π =

a⊕
i=1

(
0 λi
λ−1
i 0

)
⊕
(

0 −1
−1 0

)⊕b
⊕ (1)⊕c ⊕ (−1)⊕d . (2.5)

In that case,

• Either b = d = 0 and ∀i, λi = 1 and θ is any function,

• Or b = d = 0 and ∃i, λi 6= 1 and θ is a leaky ReLu function.2

• Or b+ d > 0 and ∀i, λi = 1 and θ is an odd function,

The first case in Theorem 3 is of little interest, since pointwise linear functions are always
equivariant to linear group actions. The second case essentially says that adding a constant to a
pointwise linear function is only equivariant for representations ρ such that the sum of all rows
of ρ(−1) is equal to 1. This holds for example for the regular representation and the RCPS
layers, but not for an irrep feature space of type (I, a, b) with b > 0, since in that case, some
rows have a single ”-1” entry. The most interesting case is the third one, since it describes what
pointwise nonlinearities one can apply. The condition (2.5) on the decomposition of ρ essentially
excludes all representations that have more than one nonzero value in at least one row of ρ(−1).
Among valid ρ’s that decompose as (2.5), we see that the regular representation (corresponding
to the first block in (2.5) with λi = 1)), used in RCPS, stands out as the only that allows any
nonlinearity, besides of course invariant channels of type ”+1” (third block in (2.5)). Replacing
a ”1” in the regular representation by a scalar λi 6= 1 (in the first block of (2.5), with b = d = 0)
creates a valid representation ρ, however only leaky ReLu pointwise nonlinearities can be applied
in that case. Another case of practical interest is the irrep feature space of type (I, c, d) for some
c > 0 and d > 0. By Theorem 3, only odd nonlinearities are allowed in that case, such as
the hyperbolic tangent function. Finally, one should keep in mind that other representations,
which do not satisfy the conditions listed in Theorem 3, do not allow any equivariant nonlinear

pointwise transform; this is for example the case of ρ(−1) =

(
0 −1/2
−2 0

)
, which is a valid

representation of Z2 but does neither meet the condition to accept affine activations (case 2),
nor to accept nonlinear activations (case 3) because ρ(−1) does not decompose according to
(2.5).

Other activation functions Besides pointwise transformations from a ρ-feature space to itself
characterized in Theorem 3, the set of nonlinear equivariant layers is tremendous and the design
choices are endless. A first extension is to keep pointwise activation, but to allow different
nonlinearities on different channels, e.g., by using any function on the ”+1” channels and an odd
function on the ”-1”channels of an irrep feature space. Another relaxation is to use different input
and output representations. While odd functions will not affect the field type, even functions
will turn a field of type ”-1” into a ”+1” type. It is well known that any function decomposes
into a sum of an odd and even function. Therefore, given ρ, a representation decomposed as in

2A leaky ReLu function is θ(x) = αsign(x)x for some (α+, α−) ∈ R2.
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(2.5), any pointwise non-linearity can be used in a ρ-feature space by first decomposing it into
its odd and even components and applying each component separately for the second and fourth
blocks.

Other possibilities exist and include creating new representations by tensorization, which
amounts to taking pointwise products between different channels [Dym and Maron, 2020; Kon-
dor, 2018; Thomas et al., 2018]. or using non point-wise activation layers that act on several
coupled dimensions, such as the ones used in [Thomas et al., 2018]. For instance, we could apply
the max function to paired channels. These possibilities are discussed in [Weiler and Cesa, 2019]

Batch normalization An equivariant batch normalization was introduced by [Shrikumar et al.,
2017]. It considers a feature map and its reverse complement as two instances, which is easy
to do because the reverse complement feature map is already computed when using regular
representation. We propose another batch normalization for irrep feature spaces that also gives
the result we would have had if the batch contained all the reverse complement of its sequences.
For the ”+1” dimensions, it amounts to scaling as we would have the same values twice. For
the ”-1” dimensions, we enforce a zero mean and compute a variance estimate based on this
constraint.

K-mers. Instead of the standard one-hot encoding of individual nucleotides as input layer, we
propose to one-hot encode k-mers for k ≥ 1, i.e., overlapping blocks of k consecutive nucleotides.
This technique is known to improve performance in several tasks [Liang, 2012; Menegaux and
Vert, 2019]. In order to implement it into an equivariant network, we need to know how the
group acts on the k-mers space, made of 4k elements. The simplest idea is to pair the index of
the channels of two RC k-mers. Because some k-mers are their own reverse complement, the
canonical way to do so is to have a representation that is a blend of ”+1” irrep and regular
representation. An alternative is to make the regular representation act on the k-mers instead
by redundantly encoding these k-mers into paired dimensions. This is the strategy we follow in
our implementation, to be more coherent with the usual input group action.

2.3 Experiments

We assess the performance of various equivariant architectures on a set of three binary prediction
and four sequence prediction problems used by Zhou et al. [2020] to assess the performance of
RCPS networks. The binary classification problems aim to predict if a DNA sequence binds to
three transcription factors (TFs), based on genome-wide binarized TF-ChIP-seq data for Max,
Ctcf and Spi1 in the GM12878 lymphoblastoid cell-line [Shrikumar et al., 2017]. The sequence
prediction problems aim to predict TF binding at the base-pair resolution, using genome-wide
ChIP-nexus profiles of four TFs- Oct4, Sox2, Nanog and Klf4 in mouse embryonic stem cells.
For a more detailed explanation of the experimental setup, please refer to Zhou et al. [2020].
We report ”significant” differences in performance below when the P-value of a Wilcoxon signed
rank test is smaller than 0.05.

Models. We build over the work of Zhou et al. [2020] for both the binary and the sequence
prediction problems. They benchmarked an equivariant RCPS architecture and a corresponding
non-equivariant model, with the same number of filters and trained with data augmentation,
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which we respectively refer to as ”RCPS” and ”Standard” models below. The data augmentation
scheme for the ”Standard” model consists in adding to the training set the reverse complement
sequences of all training sequences, which is a natural procedure to let the model ”learn” the
equivariance without encoding it explicitly in the architecture of the network. We checked
empirically that data augmentation significantly improves the performance of non-equivariant
models (Appendix B.7). In addition, we extend the RCPS architecture with one-hot encoding of
k-mers as input layers, which we refer to as ”Regular” below. Finally, we add to the comparison
a new equivariant network where each RCPS layer is replaced by an (I, a, b) layer with the same
number of filters, which we call ”Irrep” below. We also use k-mers and vary the ratio a/(a+ b)
in this model. We combine the regular and ”+1” dimensions with ReLu activations and the ”-1”
dimensions with a tanh activation.

Influence of hyperparameters in equivariant models To assess the impact of different hyper-
parameters in the family of equivariant models we propose (k-mer length for Irrep and Regular,
a/(a + b) ratio for Irrep), we train equivariant models with different combinations of hyper-
parameters on the training set and assess their performance on the validation set, repeating
the process ten times with different random seeds. We assess the performance of each run in
terms of Area under the Receiver Operator Characteristic (AuROC), and show in Figure 2.2
the average performance reached by all runs with a given ratio a/(a + b) ∈ {0, 1/4, 1/2, 3/4, 1}
(left) and with a given k ∈ {1, 2, 3, 4} (right). We see a clear asymmetry in the performance as a
function of a/(a+ b), with poor performance when a = 0 and optimal performance for a = 0.75,
significantly better than all other ratios tested. This confirms that exploring different irreps may
be valuable. As for the k-mer length, setting k = 3 gives the best performance and significantly
outperforms all other values of k tested. This confirms that going beyond one-hot encoding of
nucleotides in equivariant architectures can be beneficial.
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Figure 2.2 – Average AuROC performance across four TFs and 10 random seeds for the Irrep
model as a function of a/(a+b) (left, also averaged over k values) and for the Irrep and Regular
models as a function of k (right, also averaged over a/(a+ b) values for Irrep).

Binary task. We then compare the test set performance of three different models for the binary
classification task: 1) Standard, 2) RCPS, and 3) the best Irrep or Regular equivariant model,
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where hyperparameters are selected based on the AuROC on the validation set, which we denote
as ”Best Equivariant”. Figure 2.3 (left) shows the performance of each model on each TF task
and overall. As already observed by [Shrikumar et al., 2017], the equivariant RCPS architecture
has a strong lead over the Standard, non-equivariant model in spite of data augmentation.
Interestingly, we see that Best Equivariant is significantly better than RCPS on all tasks, and
that the performance gain from RCPS to Best equivariant is of the same order as the performance
gain from Standard to RCPS. This demonstrates that the family of equivariant architectures we
introduce in this paper can lead to significant improvement over existing architectures.
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Figure 2.3 – AuROC performance of the three different models (Standard, RCPS and Best
equivariant after hyperparameter selection on the validation set) on the three binary classifi-
cation problems CTCF, MAX and SPI1, as well as their average. Error bars correspond to an
estimate of the standard error on 10 repeats with different random seeds. The left plot is the
performance on the full datasets, while the right plot shows the performance where models are
trained on a subset of 1,000 sequences only (notice the differences of AuROC values on the
vertical axis in both plots).

Reduced models. Since equivariant architectures are meant to be particularly beneficial in the
low-data regime [Fuchs et al., 2020], we further assess the performance of the three models on
the same binary classification problems but with only 1,000 sequences used to train the models,
and show the results on Figure 2.3 (right). Overall, the performances are worse than in the
full-data regime (Figure 2.3, left), which confirms that this is a regime where more data helps.
We also see that the relative order of the three different methods remains overall the same, with
Best Equivariant outperforming RCPS, which itself outperforms Standard. Interestingly, the
gaps between the best and worse models widens in the low-data regime, showing that the prior
is more useful in this setting. More precisely, there is a large gap of about 1% between Best
Equivariant and Standard in the low data regime, compared to a gap of about 0.3% on the full
dataset. We also investigated whether equivariant models converge faster to their solutions, but
found no noticeable difference (Appendix B.8).
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On post-hoc models. Zhou et al. [2020] introduced the so-called post-hoc model, another equiv-
ariant method obtained by averaging the predictions of a Standard model over a sequence and its
reverse-complement, and showed that it is competitive with and often outperforms RCPS. The
post-hoc model only requires training and storing one network, but aggregates two predictions
for each sequence at inference time. Because of that, the good performance of post-hoc may
be due in part to the aggregation step common to all ensemble models [Dietterich, 2000]. To
decipher the respective contributions of the network architecture, on the one hand, and of the
aggregation of predictions, on the other hand, we add to the comparison an ensemble of two
Standard models trained with different random seeds (Ensemble Standard) and an ensemble of
two equivariant Irrep models (Ensemble Irrep) and present the results in Figure 2.4. We see that
Ensemble Irrep strongly outperforms Best Equivariant, and both post-hoc and Ensemble Stan-
dard widely outperform the Standard architecture. This confirms that ensembling equivariant
or non-equivariant models through post-hoc of ensemble aggregation is always useful (at the cost
of increased computational time). We see that Ensemble Standard is not significantly different
from post-hoc Standard on CTCF and SPI1, but that post-hoc Standard is better on MAX, sug-
gesting that most of the benefits of post-hoc Standard indeed comes from the ensembling effect.
Regarding the impact of the architecture for a given budget of predictions, we saw earlier than
Best equivariant significantly outperforms Standard when a single prediction per test sequence
is allowed, and see now that Ensemble Irrep strongly outperforms both post-hoc and Ensemble
Standard when two predictions are allowed, thus confirming the benefit of equivariant architec-
tures in all settings. We also see that a single Best equivariant model outperforms post-hoc and
Ensemble Standard, indicating that enforcing equivariance throughout the network is not only
faster but also more accurate than averaging a non-equivariant model over group transformed
inputs.
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Profile task. We now compare the performance of different models on the profile prediction
tasks. To limit the carbon footprint of this study, and based on the influence of hyperparameters
on the binary task (Figure 2), we only test two equivariant models in addition to Standard and
RCPS: a Regular model with k = 3, and an Irrep model with k = 3 and a/(a + b) = 75%.
We also assess the performance of post-hoc Standard (the best model in [Zhou et al., 2020]),
and an ensemble of two models of the best performing equivariant model. Figure 2.5 shows
the performance of all models in terms of Spearman correlation between the target profile and
the predicted ones, on the full dataset (left) or a reduced experiment with only 1,000 training
sequences (right).
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Figure 2.5 – Spearman Correlation between true and predicted profiles by different methods
for four data sets.

First of all, we observe as before that in the low-data regime, the gap between standard and
equivariant networks grows in favor of equivariant ones. We also observe, surprisingly, that Irrep,
which outperformed RCPS on the binary task, now underperforms it. A possible explanation
could be that since this task aims to annotate an individual nucleotide, encoding the nucleotide
level information using k-mers makes the signal blurry and decreases performance. However, in
the reduced setting, Irrep performs better again. These results indicate that for now the best
model should be chosen empirically on a validation set. Finally, despite good performance of
post-hoc Standard, the ensemble equivariant model once again performs better for the same
computational cost at inference.

Experiment settings and computational cost. All experiments were run on a single GPU (either
a GTX1080 or a RTX6000), with 20 CPU cores. The binary classification experiments were
shorter to train. To limit our carbon footprint, we chose to run more experiments on this task,
e.g., for hyperparameter tuning and to reduce the number of replicates for the profile task. The
total runtimes of each of those tasks were approximately a week.
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2.4 Conclusion

In this paper, we addressed the problem of including the RC symmetry prior in neural net-
works. Leveraging the framework of equivariant networks, in particular steerable CNNs, we
deepened existing methods by unraveling the whole space of linear layers and pointwise non-
linearities that are translation and RC-equivariant. We also investigated the links between the
linear representations and the non-linear layers of neural networks, exposing the special role
of the regular representation in equivariant networks. Finally, we implemented new linear and
nonlinear equivariant layers and made all these equivariant layers available in Keras [Chollet,
2015] and Pytorch [Paszke et al., 2019]. 3 We then explored empirically how this larger equiv-
ariant functional space behaves in terms of learning. Our best results improve the state of the
art performance of equivariant networks, showing that new equivariant architectures can have
practical benefits. In the future we plan to test more deeply the newly proposed architectures
on prediction tasks involving double-stranded DNA, such as DNA-protein binding prediction,
epigenetics or metagenomics. On the theoretical side, we characterized equivariant pointwise
nonlinearities that preserve the layer type, but more general nonlinear transforms (e.g., not
pointwise, or changing the layer type) remain to be fully characterized.

3code available at github.com/Vincentx15/Equi-RC
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Chapter 3

Augmented base pairing networks encode
RNA-small molecule binding preferences

This chapter was made in collaboration with Carlos Oliver, Roman Sarrazin Gendron,
Vladimir Reinharz, William L Hamilton, Nicolas Moitessier, Jérôme Waldispühl and was
published in Nucleic Acid Research in 2020 [Oliver et al., 2020].
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CHAPTER 3. AUGMENTED BASE PAIRING NETWORKS ENCODE RNA-SMALL
MOLECULE BINDING PREFERENCES

Abstract

RNA-small molecule binding is a key regulatory mechanism which can stabilize 3D struc-
tures and activate molecular functions. The discovery of RNA-targeting compounds is thus
a current topic of interest for novel therapies. Our work is a first attempt at bringing the
scalability and generalization abilities of machine learning methods to the problem of RNA
drug discovery, as well as a step towards understanding the interactions which drive binding
specificity. Our tool, RNAmigos, builds and encodes a network representation of RNA struc-
tures to predict likely ligands for novel binding sites. We subject ligand predictions to virtual
screening and show that we are able to place the true ligand in the 71st-73rd percentile in
two decoy libraries, showing a significant improvement over several baselines, and a state of
the art method. Furthermore, we observe that augmenting structural networks with non-
canonical base pairing data is the only representation able to uncover a significant signal,
suggesting that such interactions are a necessary source of binding specificity. We also find
that pre-training with an auxiliary graph representation learning task significantly boosts
performance of ligand prediction. This finding can serve as a general principle for RNA
structure-function prediction when data is scarce. RNAmigos shows that RNA binding data
contains structural patterns with potential for drug discovery, and provides methodological
insights for possible applications to other structure-function learning tasks.
The source code and data is freely available at csb.cs.mcgill.ca/RNAmigos.

Résumé

La liaison d’une petite molécule à l’ARN est un mécanisme important qui peut stabiliser
la structure tridimensionnelle d’un ARN et activer sa fonction. La découverte de compo-
sés ciblant l’ARN est donc un sujet central pour de nouvelles thérapies. Notre travail tente
d’apporter la scalabilité et la généralisation des méthodes d’apprentissage automatique au
problème de la découverte de médicaments à d’ARN, et représente une étape vers la compré-
hension des interactions qui déterminent cette liaison. Notre outil, RNAmigos, représente les
structures d’ARN par un réseau pour prédire les ligands probables étant donné un nouveau
site de liaison. Nous soumettons nos prédictions à un criblage virtuel et montrons que nous
sommes capables de placer le vrai ligand dans le 72eme centile parmi des decoys, une amélio-
ration significative relativement à l’état de l’art. De plus, nous observons que la représentation
par un réseau augmenté d’interactions non canoniques entre paires de bases est la seule ca-
pable de découvrir un signal significatif, ce qui suggère que ces interactions sont une source
nécessaire à la spécificité de liaison. Nous constatons également que le pré-entrâınement avec
une tâche d’apprentissage auxiliaire améliore considérablement les performances de prédic-
tion des ligands. Cette découverte peut servir de principe général pour prédire la fonction
d’un ARN à partir de sa structure, lorsque les données sont rares. RNAmigos montre que
les données de liaison d’ARN contiennent des motifs structurels avec un potentiel pour la
découverte de médicaments et fournit des indications méthodologiques pour d’autres tâches
d’apprentissage de liens entre structure et fonction.
Le code source et les données sont disponibles à l’adresse :
csb.cs.mcgill.ca/RNAmigos.
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3.1. INTRODUCTION

3.1 Introduction

Recent studies have identified small organic molecules as important non-covalent regulators of
RNA function [Donlic and Hargrove, 2018]. These discoveries contribute to a better under-
standing of pathways present in all organisms, but also pose RNA molecules as a large class of
promising novel drug targets. For example, Ribocil, which has recently been uncovered through
a phenotypic assay to target the FMN riboswitch, is currently undergoing clinical trials as a
novel antibiotic [Howe et al., 2015]. Various other small molecule-activated RNA systems are
also being proposed[Porter et al., 2017; Rauch et al., 2020; Wagner et al., 2018]. Notable among
these is the application to CRISPR activation regulation [Kundert et al., 2019]. The list of
possible therapies is likely to expand given the observations of KD Warner and co-workers that
only a small fraction of the genome is translated into protein (1.5%) while the vast majority is
transcribed into potentially druggable non-coding RNA (70%) [Warner et al., 2018].

3.1.1 RNA Structural Organization

RNAs possess multiple levels of structural organization which together determine function,
and by extension, ligand binding ability. At the simplest level, RNA is a string of monomers
{A,U,C,G} linked by a chain of covalent bonds known as the backbone. This is commonly
known as the primary structure of RNA. Non-covalent pairwise interactions between nucleotides
(bases) in the chain give rise to the secondary and tertiary structure. Canonical pairs (i.e.
A-U, C-G) give rise to the secondary structure. Notably, these pairs form loops and stacks
(helices), assembling a stable scaffold for the full structure [Tinoco Jr and Bustamante, 1999].
The experimental determination of binding energies for these pairs [Freier et al., 1986] prompted
a boom of algorithms for sequence to secondary structure prediction such as RNAfold, [Lorenz
et al., 2011]. In seminal work, Leontis and Westhof identified 11 additional types of base pairing
occurring in 3D structures [Leontis and Westhof, 1998, 2001], known as non-canonical base pairs.
These interactions can occur between any pair of nucleotides and are defined by the relative
orientations of three faces of the interacting bases in 3D. By considering all combinations of
faces and a cis and trans orientation, we arrive at 12 possible base pairing geometries. Whereas
canonical pairs form stable helices, non-canonical pairs are typically found in loops (i.e. regions
without canonical pairs) and create more complex structural patterns [Leontis and Westhof,
2003; Petrov et al., 2013b]. These pairings fine-tune RNA function by defining structure at the
3D level [Leontis et al., 2006]. Interestingly, non-canonical pairs were also found to be enriched
in ligand binding sites [David-Eden et al., 2010; Kligun and Mandel-Gutfreund, 2013], which
corroborates with the observation that increased structural complexity is associated with binding
specificity [Warner et al., 2018].

These observations, together with the well-studied role of secondary structure in RNA ligand
binding [Thomas and Hergenrother, 2008], led us to hypothesize that studying RNA structures
at the augmented base-pairing level (i.e. including non-canonical pairs) holds useful spatial and
chemical information about ligand binding. However, studying RNA at this level of structure
comes with major algorithmic challenges, such as the lack of binding energies and more complex
interaction patterns. For these reasons, non-canonical interactions are typically modeled with
statistical methods, and represented using more general data structures such as graphs [Cruz
and Westhof, 2011]. In practice, this means that a graph using vertices to represent nucleotides
and multi-relational edges to encode base-pairing interactions could offer a signature for RNA
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ligand binding sites (See Figure 3.1 for an example of a binding site and its associated base
pairing network). We call this graphical representation of RNA sites annotated with canonical
and non-canonical interactions an Augmented Base Pairing Network (ABPN) since we consider
base pairs beyond the canonicals. Indeed, similar representations of RNA base pairing networks
have been exploited in various tools [Cruz and Westhof, 2011; Petrov et al., 2013b; Reinharz
et al., 2018a; Sarrazin-Gendron et al., 2019] for their ability to capture RNA-specific interactions
in an interpretable manner. This paradigm distinguishes RNA from protein-ligand interactions
where surface-cavity topologies tend to drive binding preferences [Luo et al., 2019], hence direct
use of atomic coordinates can be more appropriate.

a Binding site atomic coordinates

b Graph encoding of binding site as an aug-
mented base pairing network (ABPN)

Figure 3.1 – RNA structure representation of the THF riboswitch binding site (PDB: 4LVV) as
atomic coordinates using UCSF Chimera [Pettersen et al., 2004](left) and resulting augmented
base pairing network (ABPN) (right). We superpose the ABPN in the 3D visualization. Nodes
are drawn as white spheres, backbone connections are in white, and canonical and non-canonical
base pairs are green and red tubes respectively. We color the edges simply to guide the eye to
the corresponding base pairs but note that edge color has no special meaning to our graphs.
We annotate the graph representation with the standard Leontis-Westhof nomenclature for
pairing type symbols. In this case, the binding site has three canonical interactions denoted
( ), and three non canonicals of types ( , , ).

3.1.2 Structure-based Drug Discovery and RNA Base Pairing Networks

The central aim of structure-based drug discovery is to identify compounds with high affinity to
a given site or set of binding sites. A natural problem to address in this context is the prediction
of binding affinity from a binding site-ligand pair. Machine learning models which solve this task
can be used as alternatives to computationally expensive docking simulations to screen ligand
databases for strong binders [Kitchen et al., 2004]. And in some cases have shown superior
performance to methods built on explicit chemico-physical knowledge [Gómez-Bombarelli et al.,
2018]. This setting is quite feasible in the protein domain as affinities and drug screens are
abundant, hence various methods have been proposed [Jiménez et al., 2018]. Recently, some
repositories of RNA small molecule data have been made public [Wang et al., 2018] however,
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only a handful of binding affinities are known. Given a pose for a ligand inside a binding site,
various scoring approaches have been proposed; DrugScoreRNA, and LigandRNA [Pfeffer and
Gohlke, 2007; Philips et al., 2013], SPA-LN [Yan and Wang, 2017] which are built on a priori
chemical knowledge and rely on accurate docking. While RNA docking methods which search
for the optimal pose in a binding site are still showing limited success [Luo et al., 2019; Sun
et al., 2017b].

The fundamental commonality in these tools is that they all require a binding site and ligand
as input. Therefore, identifying a binder consists of docking and scoring all combinations of RNA
and small molecules from a desired library in all putative poses, which can be prohibitive. In this
work, we ask whether base pairing patterns, which creates a scaffold for the 3D structures and is
easier to obtain, can be used to accelerate these searches. Or in other words, if a coarse-grained
representation of RNA structures provides sufficient information about potential ligands.

To our knowledge, the closest contribution to this work is a template-based approach named
Inforna [Disney et al., 2016]. Inforna searches through an input sequence and secondary struc-
ture for motifs that are similar to those found in a library of small-molecule structural binding
motifs, and returns candidate ligands. Here, we propose two major innovations to such ap-
proaches. First, we take the first step towards learning a generalizable RNA binding landscape
that can be used to infer compounds which are not explicitly present in compound libraries.
Previous contributions have shown success in using protein 3D structures information to reach
this objective in proteins [Aumentado-Armstrong, 2018; Gómez-Bombarelli et al., 2018; Mallet
et al., 2019; Torng and Altman, 2019], but this is to our knowledge the first attempt to apply
a similar strategy to RNAs. Next, because we also aim to leverage the specificity of the RNA
structural organization, we investigate the impact of higher-order base pair interactions (beyond
classical secondary structure), which has yet to be explored.

3.1.3 Contribution

RNAmigos brings together domain knowledge of RNA structure, currently available crystal struc-
ture data, and graph neural networks, to show that base pairing networks can be used to
automatically predict ligands for RNA structures. Importantly, we propose the use of Aug-
mented Base Pairing (ABPNs) networks, an enriched alphabet of base pairing interactions, and
demonstrate that they are a necessary component for capturing binding signatures. Molecular
fingerprints predicted by RNAmigos serve as ligand search tools across diverse ligand classes and
show strong performance in two different ligand screens, as well as compared to a state of the
art method, Inforna [Disney et al., 2016]. Additionally, we explore the use of an unsupervised
graph representation learning scheme for boosting model performance in this low-data setting.
The implications of our work are two-fold (i) we show for the first time that we can learn from
non-canonical interaction data to make predictions about RNA function, and (ii) our ability to
enrich for actives in compound libraries shows potential for RNAmigos as an upstream filtering
step for more fine-grained drug discovery tools such as docking. The core implementation of
RNAmigos is built in Pytorch [Paszke et al., 2019] and DGL [Wang et al., 2019] and is available
as an open source Python 3.6 software package.
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3.2 Materials and Methods

3.2.1 Model Overview

Our model (RNAmigos) seeks to identify possible ligands for a given coarse-grained representation
of an RNA binding site (See Figure 3.2). More precisely, our input is an ABPNs modelling the
RNA structure, from which we predict a molecular fingerprint for a potential ligand. This
fingerprint can be used to search a library of compounds for active binders. We train RNAmigos

on RNA-ligand pairs found in the RCSB PDB Data Bank (www.rcsb.org) [Berman et al., 2000],
and use graph neural networks [Schlichtkrull et al., 2018] to learn the relationship between RNA
structure and ligand binding preferences.

3.2.2 Dataset Preparation

We begin by collecting a set of RNA-small molecule complexes from the PDB Data Bank [Berman
et al., 2000]. We download all crystal structures (90% identity threshold) which contain RNA
and at least one ligand. This results in 2993 PDB structures. We omit ions such as magnesium
(Mg+) from the set of valid ligands as they vastly outnumber organic ligands and likely require
customized models. [Philips et al., 2012] We choose a maximum allowable distance between any
ligand atom and any RNA atom of 10 Angstroms according to David-Eden et al. [2010] which
statistically characterized ribosome antibiotic binding sites. The number of valid sites is further
reduced when we remove binding sites with fewer than five RNA residues and remove binding
sites containing a large proportion of protein residues, (See Supp Fig. S1). The final training
set consists of 773 binding sites associated with 270 unique ligands.

Finally, we build an ABPN from the 3D structure of each binding site identified in the previ-
ous step. In the ABPN, each node corresponds to a residue in the binding site, and links/edges
are formed between nodes if they form a backbone or base pair interaction. Node and edge an-
notations are taken from the BGSU RNA 3D Motif Atlas [Petrov et al., 2013b] database which
maintains base pairing annotations of all PDBs with Leontis-Westhof and backbone interaction
types computed by the software FR3D [Sarver et al., 2008]. In this manner, each ABPNs stores
the nucleotide identity (A, U, C, G) of each of its residues as a node attribute, and each base
pairing interaction corresponds to an edge with one of 13 different types (backbone + 12 base
pairing geometries). The resulting graphs are on average 15.76 nodes in size. At this point, the
ligand is removed from the structure so that the graph contains only RNA base-pairing informa-
tion. While atomic coordinates are the current source of data, we highlight that a key feature
of taking ABPNs as input is that we can eventually learn from many other sources of ABPN
data which are easier to obtain than crystal structures. A promising example comes from recent
developments in predicting base pairing networks from RNA sequences in high-throughput [Roll
et al., 2016; Sarrazin-Gendron et al., 2019]. Our model would then be able to directly use such
predictions once they are linked to a functional label (such as a ligand in this case). For full
details on binding site extraction and graph construction, see Supplementary Material Section
C.1.
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3.2.3 Fingerprint Prediction

Given a binding site, our model predicts a set of chemical features which can be used to identify
a ligand. This set of features is typically known as a molecular fingerprint [Cereto-Massagué
et al., 2015]. Many approaches to compute fingerprints from chemical structures have been
developed; all with the common aim of numerically encoding chemicals [Duvenaud et al., 2015;
Glen et al., 2006; Rogers and Hahn, 2010]. Such encodings greatly facilitate searches for similar
compounds in databases and screens. In this work, we use a common fingerprint implementation
known as the MDL Molecular Access Keys (MACCS) fingerprint [Durant et al., 2002] which has
the advantage of providing compact and interpretable entries. For a given chemical compound
c, the MACCS fingerprint fc is a 166 bit binary vector where each entry indicates the presence
or absence of a chemical property. For the ith chemical property, fc[i] is set to 1 if the chemical
property is present and is 0 otherwise. We use the set of 166 predefined chemical properties from
the Pybel [O’Boyle et al., 2008] implementation as a target vector for our model. We emphasize
that the computation of the fingerprint depends only on the chemical composition of the ligand
and not on the RNA binding site. The main objective of our model is to predict the set of
chemical features (fingerprint) that is close to that of the co-crystallized ligand using only RNA
base pairing networks. For convenience, we call the ligand co-crystallized with a given site its
native ligand.

3.2.4 Model Architecture

Since a key feature of our ABPNs is the fact that we encode base pairing geometry as an
edge category (or relation type) in a graph, we use a Relational Graph Convolutional Network
(RGCN) [Schlichtkrull et al., 2018] as the core of the fingerprint prediction model (See Figure
3.2). An RGCN is a specialized neural network which acts directly on graphs, allowing us to
naturally model ABPN structures. Here, a nucleotide is associated with a node and a base
pair interaction represented by an edge. At a high level, the RGCN computes an encoding for
each node, known as a node embedding. Formally, we denote a node embedding for node i as a
d-dimensional real-valued vector, zi ∈ Rd. The notion of a node embedding can be understood
in a similar manner to molecular fingerprints. Each entry of the vector numerically encodes a
feature of the node and its neighborhood (i.e. the nucleotide).

We can choose the embeddings such that they maximize performance on some classification
task (supervised; analogous to image classification), or to capture structural similarity relation-
ships (unsupervised; analogous to dimensionality reduction, and molecular fingerprints). More
formally, a supervised task is one where each training point has an associated external label (i.e.
the feature we want to predict). In our case, the native ligand acts as a label for the binding site.
On the other hand, an unsupervised task is one where we only have the input data but no ground
truth; and the task becomes to compute the best possible classification of the data points. We
will therefore additionally train a model to recognize structurally similar RNA neighborhoods
via unsupervised node embedding techniques.

In this work, we propose a pipeline that combines supervised and unsupervised node em-
bedding methods to best represent ABPN structure and maximize predictive performance. Fig-
ure 3.2 provides an overview of our system. Given an ABPN, (Figure 3.2 (a)) we use an
RGCN to compute an embedding for each node, to which add the identity of the corresponding
nucleotide. In this manner, node embeddings represent structure and sequence identity. The
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node embedding RGCN is pre-trained using an unsupervised structure encoding task (Figure
3.2 (b)). Since our task is to associate the entire ABPN with a molecular fingerprint, we use
a pooling process (Figure 3.2 (c)), which aggregates node-level embeddings into a graph-level
(binding site) representation. The final graph-level representation (the vector h in Figure 3.2
(c)), is fed through a simple neural network to output the final fingerprint. The entire network is
trained to minimize the difference between the predicted fingerprint ŷ and the native fingerprint
y using a standard binary cross-entropy loss. Finally, we evaluate our predictions by using the
predicted fingerprint to identify the native ligand from a compound library (Figure 3.2 (d)).
See Supplemental Material Section C.2 for a full description of the neural network.

3.2.5 Unsupervised Pre-Training: ABPN Node Embeddings

Since RNA-small molecule binding events are relatively infrequent in the set of RNA 3D struc-
tures, the number of training points for ligand prediction (supervised learning) is limited. How-
ever, we are still able to leverage the full set of RNA 3D structures (3,972 full RNA structures vs
773 binding sites) using unsupervised pre-training, which is known to boost performance when
labeled data is scarce [Erhan et al., 2010]. Recent methods have been developed for unsupervised
learning on network data [Hamilton et al., 2017b; Sun et al., 2019]. As described in the preceding
section, node embeddings can be trained to maximize performance on a prediction task (e.g.
ligand prediction), or an unsupervised task (encoding similarity relationships, e.g. molecular
fingerprints). In our case, we would train an RGCN to simply produce similar embeddings for
RNA nodes with similar local structures. This would define a learning task on RNA structures
for which we don’t have a label (native ligand).

This process is analogous to molecular fingerprint building, where we wish to numerically
encode structural similarity relationships. Once the RGCN has learned to encode the local
structure of each node, the downstream task of ligand prediction becomes less prone to overfitting
and more likely to learn general patterns [Erhan et al., 2010]. In the unsupervised setting, we
train a model to produce embeddings for a pair nodes such that the similarity between the
embeddings zu and zv is proportional to a user-defined similarity measure K which compares
nodes u and v in the graph.

We are free to choose the pairwise node similarity function K : (u, v) → [0, 1] according to
the application domain.

Here, we adapt the node similarity function proposed in struc2vec [Ribeiro et al., 2017]
which allows us to capture local structural similarity across graphs. Other node similarity
functions such as the ones used in GraphClust for RNA 2D structures [Heyne et al., 2012] are
only able to compare nodes within the same graph and are affected by the distance between
nodes which is not necessarily related to structural identity. Our similarity function addresses
these limitations by comparing the counts of edge types in the local neighborhood of u and v.
We provide an example of a comparison between a pair of two nodes on simplified graphs in
Figure 3.3 and show the result on a sample ABPNs in Supplementary Figure C.3.

Therefore, in the first training phase, our network tries to learn node embeddings on a large
data set which are aware of general RNA structural patterns. Once this phase has converged,
the model is then asked to predict ligand fingerprints.
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Figure 3.2 – Outline of the RNAmigos pipeline. A base pairing network is passed as input to
RNAmigos. In training mode, it is paired with a native ligand (Target) from which a target
fingerprint y is constructed. The embedding network (RGCN) produces a matrix of node
embeddings of dimension n× d where n is the number of nodes in the graph, and d is a fixed
embedding size. This is followed by a pooling step which reduces node embeddings to a single
graph-level vector. Finally, the graph representation is fed through a multi-layer perceptron
(MLP) to produce a predicted fingerprint ŷ that minimizes the distance Lc to the native
fingerprint y. The fingerprint is then used to search for similar ligands to the prediction in a
ligand screen and thus enriches the probability of identifying an active compound. The RGCN
network is pre-trained using an unsupervised node embedding framework which allows us to
leverage structural patterns from a large dataset of RNA structures. This network is trained to
generate embeddings which minimize the distance (Lr) between kernel similarity k(u, v) and
embedding similarity 〈zu, zv〉
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Figure 3.3 – Here, we compare the local neighborhoods of node u in graph G and node v in
graph H. In this simple example, graphs only have one of two possible edge types, red and
black. We compare the distributions of edge labels at each distance from the source nodes (u
and v) to obtain the final similarity value K(u, v).

3.2.6 Ligand Screen

Here, we propose a test to interpret the usefulness of our model by measuring its performance
in a ligand screen setting. In a ligand screen, we are given a set of compounds and we seek to
identify the most promising one. For validation, we know a native binder and we hide it in a set
of inactive compounds, also known as decoys. The model is asked to find back the active. Given
a binding site, our model produces a predicted fingerprint. We then rank all compounds of the
decoy set according to distance to the predicted fingerprint. We normalize this score by the size
of the set. Thus, a successful predictor will rank the native ligand as closest to its prediction
(normalized rank close to 1), while a random predictor will result in an average rank of 0.5.

Considering that the distribution of RNA ligands appears to cluster to specific sub-regions
(see Supplementary Figure C.2), this evaluation method also ensures that a classifier does not
obtain a good score by simply predicting the average ligand as it would when only considering
the absolute distance between the predicted and the native fingerprints.

We construct two decoy sets for our experiments. Since there are currently no experimentally
validated data sets of active and inactive binders for a given RNA site (such as DUDE for
protein [Mysinger et al., 2012]), our first set consists of all RNA-binding ligands in the PDB
(270 ligands). The second decoy set is constructed using DecoyFinder [Adrià et al., 2012] on
default settings, which samples a list of 36 decoys for each compound such that generic chemical
properties are preserved while potentially disturbing binding potential. Of course, this test
assumes that chemical dissimilarity between an active compound implies inactivity which is not
always the case [Bantscheff et al., 2009]. However, the current aim of our work is simply to
determine whether ABPNs retains a significant amount of information about its observed ligand
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preferences, for which this test is sufficient.

3.3 Results

We report the resulting rank over the list of all RNA-small molecule pairs as well as the set of
all decoys for each ligand, following the two decoy benchmark process.

Due to the limited size of our labeled data set, we performed a 10-fold cross-validation to
include all training pairs in the evaluation and provide a more accurate measure of performance.
All results are reported from the held-out sets in our validation, hence the model is never trained
on the same binding sites that are being predicted on.

Node embeddings are computed using a 3-layer RGCN, each layer consisting of 16 dimen-
sional inputs and outputs, a graph attention layer computing a 16 dimensional graph embedding
and a fully-connected layer, which outputs a 166-dimensional vector. See Supplementary Table
C.1 for full model architecture and hyperparameters. Variations of the architecture used did not
have strong effects on performance, so no extensive hyper-parameter search was conducted. We
leave the exploration of other architecture choices for future work.

3.3.1 Augmented RNA Base Pairing Networks Encode Binding Preferences

Setting : The first hypothesis to test is that the proposed framework (ABPN ) is able to re-
trieve some information about ligand binding. To explore this question, we compute the rank
and distance metrics on ablated data. We compare this performance to three baselines:
· random consists of a synthetic label set where each binding site is assigned a uniformly random
166-dimensional binary vector (fingerprint).
· swap is designed to account for imbalances in the data (some ligands are more frequent than
others): each binding site is assigned a fingerprint selected at random from the set of observed
fingerprints. The overall distribution of ligand fingerprints thus remains the same but the input-
output correlations are broken.
· majority is a constant ligand annotation computed as a majority vote over all fingerprints at
each index. This is to be compared to the swap to check that the only thing that can be learnt
on swapped data is over-representation of some ligands within the experiment.

The distributions of performance over each binding site-ligand pair are visualized for all
experiments in Figure 3.4 as a box plot. Summary statistics can be found in Table 3.1 with
accompanying standard deviations in Supp. Table S2, and Euclidean distances from the native
ligand in Supp. Fig. S5. We also assessed the statistical significance of the difference of the
means in a pairwise Wilcoxon rank test which is shown in Table 3.2.

Performance : In the RNA ligands setting, our full model achieves a rank of 0.68 and a mean-
squared error (MSE) of 0.150 to the native fingerprint. The random, swap and majority experi-
ments respectively yield ranks of 0.542, 0.603 and 0.603 and Mean Squared Errors (MSE) of 0.5,
0.18 and 0.18. This confirms that this model retrieves signal for the data and outperforms base-
lines. This conclusion is statistically significant based on a Wilcoxon p-value of at most 7e−18

between the model and the randomized results. As expected, the majority scheme is statistically
equivalent to the swapped one and superior to the random one. These results are similar in the
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Experiment
Ranks L2

DecoyFinder RNA DecoyFinder RNA

random 0.611 0.542 0.502 0.502
majority 0.621 0.603 0.175 0.179

swap 0.617 0.603 0.177 0.179
no-label 0.628 0.606 0.176 0.180
primary 0.624 0.592 0.181 0.186

secondary 0.631 0.605 0.178 0.182
ABPN 0.695 0.681 0.155 0.160

ABPN + unsup. 0.735 0.715 0.145318 0.150189

Table 3.1 – Mean ligand screen ranks and L2 (Euclidean) distance achieved on held-out binding
sites for each experiment and decoy set.

DecoyFinder (See Supplemental Figure C.4) setting where the mean rank of the model is 0.69
compared to 0.62 in the majority setting. This shows that the full model successfully retrieves
some signal and outperforms the baselines (Wilcoxon test results for DecoyFinder are shown in
Supplemental Table C.3).

3.3.2 Augmented Base Pairing Networks Encode Ligand Binding Information

Next, we test the hypothesis that robust descriptors in the form of ABPNs from RNA domain
knowledge are key to retrieve this signal. The question is whether the non canonical interactions
encode information that lower levels of structure (secondary, primary) do not. We answer this
question by performing three ablation experiments on our training set:
· primary encodes the binding sites as graphs that only contain node sequence and backbone
interactions.
· secondary uses only information from the secondary structure which includes canonical pairs
and backbones.
· no-label preserves all the interactions (and thus graph structure) in the graph (including non
canonical) but does not distinguish between different edge types (i.e. edges only have one label).
In all these conditions, we find that performance is no better than the randomized baselines,
indicating that non canonical interactions are essential for encoding specificity in ligand binding.

Indeed, the best performing model is no-label which has a Wilcoxon p-value of 0.55 with the
majority experiment and of 1.7e−18 with the ABPN. This finding is in agreement with biological
literature on RNA binding sites and the importance of complex structural motifs for determining
functional specificity [David-Eden et al., 2010; Warner et al., 2018]. This is a major validation
of the hypothesis that these are the correct representation for RNA structure for this task.

3.3.3 Unsupervised Pre-Training Boosts Performance

As explained in ‘Unsupervised Pre-Training: ABPN Node Embeddings’, one major limitation for
this supervised task is the paucity of data. We investigate the possibility of using unsupervised
learning by pre-training on an unsupervised task, and denote this experiment as ABPN unsup.
The use of unsupervised pre-training of the node embedding network provides a significant
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Figure 3.4 – Distribution of rank achieved on ligand screening. All points are from test set
data on a 10-fold cross validation. The median is denoted with a dashed line and the mean
with a green triangle. Each point is the normalized rank of one binding site’s native ligand
when searching for it using our network’s predicted fingerprint.

performance boost over a network trained only on fingerprint reconstruction (MSE = 0.68 vs
MSE=0.715), with a p-value of 2.9e−6 This is a methodological insight that can have applications
for various other RNA-related tasks for which labeled data is typically scarce.

experiment 2 aBPN secondary primary no-label majority swap random
experiment 1

ABPN + unsup. 2.9e-06 5.1e-26 1.4e-22 2.1e-21 9.3e-25 7.2e-26 2.3e-18
ABPN - 1.7e-11 5.6e-11 1.5e-08 4.3e-10 6.4e-12 2.0e-08
secondary - 3.2e-01 7.7e-01 1.3e-01 2.8e-02 1.7e-01
primary - 4.3e-01 2.7e-01 2.4e-02 3.2e-01
no-label - 5.5e-01 1.5e-02 1.8e-01
majority - 3.7e-01 3.3e-01
swap - 5.5e-01

Table 3.2 – Wilcoxon rank test for all pairs of training conditions. Each entry in the table is
the p-value for testing the hypothesis that the ranks resulting from a pair of experiments come
from the same distribution. These are performed on the RNA decoy set. We provide the test
results for the DecoyFinder decoy set in Supplemental Table C.3 material and show consistent
results.
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3.3.4 Our Model Can Predict Diverse Ligand Classes

Next, we ask whether the positive results can be explained by a small set of ligands, or whether
it is able to achieve high scores on a diverse set of ligands. To get a better view of performance,
we plot the same prediction scores but averaged over ligand types (270 unique ligands) against
a hierarchical clustering dendrogram of each ligand (shown in Figure 3.5).
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Figure 3.5 – RNAmigos performance by ligand class. Hierarchical clustering dendrogram of
the ligands, classifying ligand families by similarity. Each cell in the horizontal grid is the
average score for binding sites containing a given ligand. Ligands belonging to the same tree
are grouped together by the clustering procedure. Colored-in sub-trees denote tight clusters
which contain ligands within 0.25 Jaccard distance.

Colored-in subtrees indicate groups of ligands that are similar, (i.e., within 0.25 Jaccard
distance of each other) which would indicate strong clustering. In this manner, we are able
to assess the performance across ‘classes’ of similar ligands. We first observe that successful
classifications are not restricted to a single class of ligands and instead show good predictions for
diverse ligands. Interestingly, the class that is most consistently predicted accurately corresponds
to the aminoglycosides (highlighted in the green cluster in the middle). Aminoglycosides are
a class of antibiotics binding to bacterial RNA with well-defined binding sites [Walter et al.,
1999], and are quite abundant in the dataset. Nucleic acid-like compounds, many of which bind
riboswitches, also form a large family of binders (green) however results were less consistent than
for aminoglycosides. A possible explanation for strong performance on aminoglycosides, apart
from the larger number of examples obtained, is that these are typically large polysaccharide-like
structures with a large number of interactions with the RNA. On the other hand, riboswitches
bind much smaller molecules with a limited number of interactions. As a result, binding site
requirements are much more complex and specific with aminoglycosides and the large number
of interactions can only be fulfilled by a limited number of molecules. We leave this question
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for future work, as with the current dataset size, we are unable to provide quantitative evidence
of such phenomena. Finally, ligands clustered on the left of the dendrogram show the weakest
performance. Since these groups show little branching in the dendrogram, we can conclude
that they represent sparsely populated ligand classes for which we have few examples and thus,
obtaining more data in these regions could improve performance.

3.3.5 Comparison with a Secondary Structure-Based Tool

Finally, we compare the performance of RNAmigos with the closest related tool we could find,
Inforna [Disney et al., 2016]. Inforna accepts as input a RNA sequence with a secondary structure
and returns a list of candidate ligands, based on sequence and structural similarities with motifs
stored in a database. Although the input is not strictly identical, it is quite close to the one
of RNAmigos. Similarly for the output, Inforna provides direct ligand information. In this
benchmark, we provide Inforna secondary structures computed with Forgi [Thiel et al., 2019]
directly from the PDB files, which is the most accurate input available.

For each chain in each RNA PDB associated with a ligand in the PDB database set, we
query the Inforna web server and obtain a list of candidate ligands that we use to search for the
native ligand (see Supp. Table S4). Importantly, in contrast to RNAmigos for which we directly
provide the binding site, Inforna scans the whole input structure for candidate sites. To address
this discrepancy, we only take the maximum score returned by Inforna for each structure.

We show the results of our benchmark in Figure 3.6 (see Supp. Fig. S6 for corresponding
distance comparisons). We were able to obtain predictions for 176 unique RNA chains corre-
sponding to 82 unique ligands. The reduction from the RNAmigos set is mainly due to excluding
PDBs which contain protein and some secondary structure extraction failures. In this context,
Inforna achieves an average enrichment at the level of our random model (mean rank 0.43, and
distance 0.48), and to some extent also consistent with the performance of RNAmigos using only
secondary structure information.

We analyzed the performance across ligand classes (see Supplemental Figure C.7) and ob-
served that the accuracy of the predictions appears to be stronger in well-known classes such as
aminoglycosides and riboswitch ligands, but the performance decreases sharply outside these
classes. This phenomenon could highlight a shortcoming of non-generalizable models, and
thus a benefit of our approach. Looking at ligand classes where both tools made predictions
(Supplemental Table C.4), we observe that RNAmigos outperforms Inforna in nearly all classes
(Inforna outperformed RNAmigos on 10 of 66 ligands tested on Inforna by a margin larger than
0.1.). It suggests that the richer structural representation leveraged by RNAmigos is an impor-
tant source of specificity. Since both tools work with differing levels of representation (2D vs
augmented 2D) and at different scales (binding site vs full sequence), we stress that this bench-
mark does not intend to be a direct comparison but rather a demonstration that higher-level
interactions are a crucial source of information.
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Figure 3.6 – Distribution of native ligand rank achieved on ligand screening in RNAmigos and
Inforna.

3.4 Discussion

We have developed a unique computational platform, RNAmigos, to show that augmented RNA
base pairing networks contain useful ligand binding information. The significance of our results
is two-fold.

We show for the first time that ABPN encodes sufficient information for a classification
task, and establish an initial methodological primitive for such a task. To date, the majority of
computational methods which leverage ABPNs have focused on sequence to structure [Sarrazin-
Gendron et al., 2019; Zirbel et al., 2015] prediction and motif identification [Petrov et al., 2013b;
Reinharz et al., 2018a]. While these tasks involve some degree of learning, the relevance of higher-
order interactions lies ultimately in their potential to specify function, which until now has been
left unexplored. Interestingly, these findings come at a time when information of the type our
model uses is becoming more widely available. Computational prediction tools such as [Sarrazin-
Gendron et al., 2019; Zirbel et al., 2015] promise to yield large amounts of higher-order RNA
pairwise interaction data without need for costly crystallography experiments. This opens the
door to applying such data in other important biological problems such as RNA binding protein
prediction [Uhl et al., 2019] and ion binding [Philips et al., 2012]. Furthermore, the promising
results obtained from the unsupervised pre-training provide a methodological building block for
assisting in supervised learning on complex RNA structures.

Second, our findings take a first step towards learning-based methods for systematically
identifying drugs binding to RNA, and pinpoint ABPNs as essential tools for this task. The
finding that only ABPN representations of binding sites was able to produce a significant signal
in the task indicates that richer representations are necessary for successful classification when
complex interactions are at play. Since our prediction is a fingerprint vector (chemical descrip-
tor) and not a simple classification of ligands (i.e directly selecting a single ligand as output, or
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predicting an affinity), the fingerprint itself can be used to search large ligand databases, and
can eventually be applied to direct molecule generation [Gómez-Bombarelli et al., 2018]. While
performance was strong across different ligand classes, it is apparent that classes for which data
is more abundant received more consistently positive predictions. Therefore, as more examples
of RNA-ligand complexes are characterized by experimental and computational techniques, we
believe that the performance of our platform will improve. Additional data will also allow us
to account for properties desired in medical applications such as synthesizability, drug-likeness
[Lipinski, 2004]. Our choice of graphs for binding site representation reflects this consideration,
as graphs can natively hold additional information such as evolutionary or chemical properties
without requiring changes to the pipeline. Furthermore, recent advances in graph neural net-
works would provide the ability to model binding site flexibility [Pareja et al., 2019]. Eventually,
computational predictions of ABPNs from sequence [Sarrazin-Gendron et al., 2019] combined
with our methods will enable large-scale searches for binding sites.

We hope that this work will motivate further investigation of the links between ABPNs and
RNA function, and eventually facilitate efforts in RNA targeted drug discovery.
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Chapter 4

VeRNAl : A Tool for Mining Fuzzy Network
Motifs in RNA

This chapter was made in collaboration with Carlos Oliver, Pericles Philippopoulos, William L
Hamilton and Jérôme Waldispühl and was published in Bioinformatics in 2022 [Oliver et al.,
2022].
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CHAPTER 4. VERNAL

Abstract

Motivation : RNA 3D motifs are recurrent substructures, modeled as networks of base
pair interactions, which are crucial for understanding structure-function relationships. The
task of automatically identifying such motifs is computationally hard, and remains a key
challenge in the field of RNA structural biology and network analysis. State of the art
methods solve special cases of the motif problem by constraining the structural variability
in occurrences of a motif, and narrowing the substructure search space.
Results : Here, we relax these constraints by posing the motif finding problem as a graph
representation learning and clustering task. This framing takes advantage of the continuous
nature of graph representations to model the flexibility and variability of RNA motifs in an
efficient manner. We propose a set of node similarity functions, clustering methods, and
motif construction algorithms to recover flexible RNA motifs. Our tool, VeRNAl can be
easily customized by users to desired levels of motif flexibility, abundance and size. We show
that VeRNAl is able to retrieve and expand known classes of motifs, as well as to propose
novel motifs.
Availability and Implementation : The source code, data and a web server are available at
vernal.cs.mcgill.ca

Résumé

Motivation : Les motifs 3D de l’ARN sont des sous-structures fréquentes, modélisées par
des réseaux d’interactions entre paires de bases, et cruciales pour la compréhension des liens
entre structure et fonction. La détection automatique de ces motifs est computationnellement
difficile et représente un challenge primordial pour le domaine de la biologie structurale de
l’ARN et de l’analyse des réseaux. Les méthodes existantes résolvent des cas particuliers de
la détection de motifs, en restreignant la variabilité au sein des occurrences d’un motif et en
se limitant à certaines sous-structures.
Resultats : Dans ce travail, nous relâchons ces contraintes en formulant cette détection comme
un problème d’apprentissage de représentation de graphes et de regroupement. Cette formu-
lation utilise la continuité des représentations induites pour modéliser la flexibilité et la
variabilité de ces motifs de manière efficace. Nous proposons un ensemble de fonctions de
similarité, de méthodes de regroupement et d’algorithmes de construction de motifs pour
détecter des motifs d’ARN flexibles. Notre outil, VeRNAl peut facilement être ajusté par ses
utilisateurs pour fixer des niveaux de flexibilité, fréquence et taille de motifs. Nous montrons
que VeRNAl est capable de retrouver des motifs connus et de les étendre, ainsi que d’en pro-
poser de nouveaux.
Disponibilité : Le code source et les données, ainsi qu’un serveur web sont disponibles à
l’addresse : vernal.cs.mcgill.ca
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4.1. INTRODUCTION

4.1 Introduction

Comparisons of RNA structures revealed the occurrence of highly similar 3D sub-units, called
RNA 3D motifs, which are thought to form a basis for non-coding RNA function [Leontis et al.,
2006]. These motifs are typically characterized by sets of similar base pairing patterns, which are
repeated across unrelated RNA [Lescoute et al., 2005]. A complete library of RNA 3D motifs
is thus a valuable source of information for evolutionary studies, discovering functional sites,
and is an important component of structure prediction methods [Roll et al., 2016; Sarrazin-
Gendron et al., 2019]. Moreover recent advances in small molecule graph generation with deep
learning demonstrate the importance of motifs as building blocks [Jin et al., 2020a]. Efficient and
automated methods to mine motifs from databases of RNA structures are essential to achieve
this goal [Djelloul, 2009; Petrov et al., 2013b; Reinharz et al., 2018a].

From a methodological point of view, RNA motif mining methods can be placed in two cate-
gories: 3D-based and graph-based. 3D-based tools seek to identify families of related structures
by performing alignments and clustering of atomic coordinates. DARTS [Abraham et al., 2008],
RNA 3D Motif Atlas [Petrov et al., 2013b], RNA Bricks [Chojnowski et al., 2014], and RNA
MCS [Ge et al., 2018] illustrate this approach. Since structural proximity is naturally defined in
coordinate space, an advantage of these tools is that variability across occurrences of a motif is
achieved for free. However, these methods require a decomposition of RNA into rigid sub-units
to be compared to each other (e.g., comparing all internal loops to each other), which limits the
scope of possible motifs to be found.

Alternatively, graph-based approaches work on discrete encodings of RNA 3D structures and
rely on network analysis algorithms to extract motifs. The building blocks of such encodings
are linear polymers of nucleotides (A, U, C, G) bound by backbone interactions. These chains
determine first, the highly stable canonical (Watson-Crick and Wobble) and then non-canonical
(all other) base base pairing geometries [Leontis and Westhof, 2001]. These pairs serve as a
scaffold for the formation of the full tertiary structure. The conservation of these base pairs
is essential to preserving the folding properties of the RNA and offers a robust signature for
the functional classification of RNAs [Griffiths-Jones et al., 2003; Oliver et al., 2020; Zhang
et al., 2016]. Using these components, any RNA 3D structure (set of atomic coordinates) can
be represented as a multi-relational graph (also referred to as base pairing network), where
nodes correspond to nucleotides, and edges to interactions between nucleotides. Edge types are
assigned based on the classification developed by Westhof et al Leontis and Westhof [2001]
which defined 12 categories of relative base pair orientations. These classes can be determined
by noting the relative angles and interacting atoms of the bases involved in the pair in 3D space.
In this set of 12 geometries, we can find the standard Watson-Crick (A-U, C-G, G-U) pairs,
also known as “canonical base pairs”, which are the most stable and abundant class. However,
when interpreting 3D motifs, the remaining 11 geometries, also known as “non canonical” are
necessary for understanding RNA structure at a 3D level [Leontis and Westhof, 2001].

Graph-based tools therefore typically aim to identify similarities at the base pairing level.
Of course, identifying motifs requires a combinatorial search and hence such tools impose strong
limitations on the search over subgraphs. Chief among these is the ability to include variability
within motifs. The notion of a fuzzy motif has been very well studied in the sequence domain
[D’haeseleer, 2006] where certain DNA sequences are accepted to be related while their nucleotide
composition can vary. Not surprisingly, the same applies in the RNA structural domain where
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well-studied motifs such as the A-minor are known to admit variability in their connectivity
pattern [Nissen et al., 2001] Closely related 3D structures may be represented as quasi isomorphic
(or fuzzy) graphs. However, most classic and tractable graph comparison algorithms rely on
exact matching. Methods which rely on strict isomorphism would fail to identify fuzzy instances,
as well as fail to discover some motifs entirely. Another limitation here is that evaluating all
potential graph motifs involves searching over the set of all subgraphs which grows exponentially
in the graph size. A first approach to resolve this challenge is to use already known motifs as a
queries to search for new instances (RMDetect [Cruz and Westhof, 2011], RNAMotifscan [Liu
et al., 2011; Popenda et al., 2010; Zhong and Zhang, 2015; Zhong et al., 2010]). However these
methods require motifs as input, which are typically obtained through visual inspection such
as A-minor or kink-turn motifs. There is thus a need for de-novo motif mining tools that look
into the space of subgraphs and find the recurrent ones. To avoid enumerating all subgraphs,
many motif mining tools restrict themselves to specific substructures. A first reach for de-novo
motifs is thus conducted by Lemieux and Major [2006] working only on a single ribosomal unit,
and focusing on cycle motifs, a very specific and small subgraph type. rna3dmotif [Djelloul,
2009] offered the first library of exact motifs only within certain known structural elements,
namely the k-way junction. Another approach to this problem is metaRNAmodules [Theis
et al., 2013] which enumerates all nested loops and uses RMDetect with a statistic to filter the
recurrent ones. Another graph-based method, developed in 2015 is RAG-3D [Zahran et al.,
2015] which uses a graph abstraction to mine motifs spanning multiple secondary structure
elements, and simultaneously proposes a query-search functionality as discussed above. More
recently, CaRNAval [Reinharz et al., 2018a; Soulé et al., 2021] attempted to expand the class
of motifs by considering interactions that connect multiple secondary structure elements while
maintaining isomorphic motif instances. All these tools either focus on local motifs or impose a
strict isomorphism of motif occurrences.

Contributions

We leverage the state of the art in graph representation learning to build continuous embeddings
of RNA substructures and identify structurally conserved yet variable motifs. We then propose
two algorithms that use these graph representations to find graphs similar to a query and to
identify novel motifs. By comparing with existing motif libraries, we are able to efficiently
identify unknown instances of existing motifs, and propose over 1,800 densely populated motifs
for further exploration.

4.2 Datasets

We extract motifs from the set of experimentally determined RNA structures [Rose et al., 2016].
To ensure that the frequency of a motif is not biased by redundant structures, we use the repre-
sentative set at 4 Angstrom resolution provided by the BGSU RNA 3D Hub [Petrov et al., 2013b].
We then build an RNA network with 13 edge types for each RNA using the FR3D annotations
provided by the same framework. Each edge represents either a backbone (covalent) interaction,
or a base pair classified in 12 geometries according to the relative orientation of the interacting
bases (nodes). This results in a total of 899 RNA graphs and 210616 nodes (nucleotides). In the
learning phase, we chop these graphs in constant-sized chunks of approximately 50 nucleotides to
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avoid dealing with graphs of heterogeneous sizes, as is detailed in Supplementary Algorithm 3.
Once the model is trained we perform all motif finding operations on whole graphs. Our valida-
tion sets consist of motifs identified by RNA 3D Motif Atlas [Petrov et al., 2013b], rna3dmotif
[Djelloul, 2009], and CaRNAval [Reinharz et al., 2018a].

4.3 Methods

We introduce VeRNAl, an algorithm to efficiently identify fuzzy recurrent network motifs in
RNA. VeRNAl decomposes RNA networks into structural building blocks and then aggregates
these blocks based on their co-occurrence in RNA.

The decomposition step introduces custom structural comparison functions which are used to
build a space of continuous embeddings for efficient clustering (Section 4.3.2). We then combine
information from the embedding space and connectivity in the graph space into a meta-graph
data structure (Section 4.3.3). We leverage this data structure to retrieve graphs similar to a
query (Section 4.3.4), and to streamline frequent substructure searches and thus identify fuzzy
motifs (Section 4.3.5).

4.3.1 Problem Definition

As described above, each RNA 3D structure can be encoded into a multi relational graph.
Without loss of generality, we consider that the set of all such graphs forms one large disconnected
directed graph G = (V,E) with about 670k nodes. We define a motif as a set of subgraphs
M = {g1, g2, ..}, drawn from G, such that the following properties hold:

1. Similar: Let s be a similarity function on graphs, and γ ∈ [0, 1]. ∀(gi, gj) ∈M2, s(gi, gj) ≥
γ

2. Connected: ∀gi ∈M, gi is a connected subgraph.

3. Frequent: the number of subgraphs of M should be above some user-defined threshold :
|M| > δ

The motif mining problem is simply to identify all sets of subgraphs (motifs) M ∈ G that
fit the above criteria. An exact solution to this problem would imply enumerating all subsets
(search for subgraphs) of G and ensuring that these criteria are satisfied (compare graphs). In
the most general case, both procedures admit exponential time algorithms [Zeng et al., 2009].
Previous works set γ = 1, so that the similarity constraint becomes another graph problem,
known as the subgraph isomorphism problem [Djelloul, 2009; Reinharz et al., 2018a]. This also
constraints these methods to rely only on pairwise comparisons and prevents them from detecting
communities of close but different neighbors. Additionally, the search step is often limited by
considering only certain substructures (e.g. hairpins, internal loops, etc). We can consider two
additional properties of motifs: maximality, and size. A motif is said to be maximal if adding a
node to gi breaks the other motif constraints. We define the size of a motif as the mean number
of nodes per graph in M. Enforcing these two properties is left as an implementation choice.
For example CaRNAval [Reinharz et al., 2018a] returns maximal exact subgraphs containing long
range interactions with no size constraints. Here, we remove search constraints on secondary
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Figure 4.1 – Meta-graph creation : RNA graphs (Left) get aligned in the embeddings space
(Middle) and represented as a meta-graph (Right). RNA nodes are grouped in meta-nodes
through clustering, which reflects structural similarity. Meta-edges are then inferred from the
source graphs connectivity

structure context [Petrov et al., 2013b; Reinharz et al., 2018a]. We also allow for non-identity
γ and call this property fuzziness.

4.3.2 Rooted Subgraph Embeddings

Maximal subgraph isomorphism algorithms rely on heuristics that are not applicable anymore
for γ < 1. Allowing fuzziness calls for other efficient ways to compare graphs. We turn to recent
advances in Graph Representation Learning, which provide a framework for encoding rooted
subgraphs [Hamilton et al., 2017b]. A rooted subgraph gu is the induced subgraph on the set of
nodes u′ ∈ g such that p(u, u′) ≤ r where p is the length of the shortest path between two nodes,
and r is a user-defined threshold (also known as radius). A vector embedding of dimension d for a
given gu is computed by a parametric function φ : gu → Rd (typically a Graph Neural Network).
These embeddings seek to approximate a graph similarity function sG : gu × gv → [0, 1] acting
directly on graphs. In an unsupervised setting, φ is trained to minimize the loss described in
Equation 4.1. The resulting embedding space conveniently captures the desired property of
fuzziness, as proximity in the embedding space (via inner product) corresponds to structurally
similar nodes in the graph space.

L = ‖〈φ(gu), φ(gu′)〉 − sG(gu, gu′)‖22, (4.1)

For RNA motifs, we are only interested in considering edge type and graph structure. No-
tably, it is known that certain base pairing geometries (edge types) share structural similarities
: a phenomenon known as isostericity (Supplementary Section D.1.2). We introduce various
customized similarity functions on RNA graphs which account for key 3D geometric features
such as isostericity [Stombaugh et al., 2009] and base pairing type [Leontis and Westhof, 2001].
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They are based on the matching of sub-parts of the rooted subgraphs as computed using the
Hungarian algorithm [Kuhn and Yaw, 1955]. We then use a Relational Graph Convolutional
Network (RGCN) model [Schlichtkrull et al., 2018] as the parametric mapping. The network
is implemented in Pytorch [Paszke et al., 2019] and DGL [Wang et al., 2019]. To focus perfor-
mance on subgraphs that contain non canonical nodes and avoid the loss to be flooded by the
canonical interactions (Watson-Crick pairs), we then scale this loss based on the presence of non
canonical interactions in the neighborhood of each node being compared. Details on the simi-
larity functions and the training of the network are included in the Supplementary Sections D.3
and D.4. We can then perform clustering in the embedding space, using the k-means algorithm
[MacQueen et al., 1967]. We select the number of clusters according to the Silhouette Score and
several clustering metrics (See Figure D.4). We denote the resulting clusters as 1-motifs (rooted
subgraphs with 1 root) as they represent the aforementioned structural blocks of RNA.

4.3.3 Meta-graph

While there is no limit to the size of a real-world motif, our rooted subgraph embeddings are
currently only aware of a fixed-size neighborhood, (i.e. the radius of the rooted subgraphs). For
this reason, these clusters only identify motifs as large as the radius of the rooted graphs. They
are centered around just one node so we denote them as 1-motifs. However, we want to extend
these to k-motifs by aggregating k different nodes based on co-occurrence in the original graph.

To guide this aggregation, we introduce a meta-graph data structure G = (C, E), whose
meta-nodes are composed of regions of the embedding space and whose meta-edges are based
on the connectivity in the RNA graphs between those regions. Meta edges are weighted by
the amount of existing edges they represent. Hence, the meta-graph simultaneously encodes
structural proximity and connectivity in the graph in one object. We can see it as a coarsened
version of G when its nodes are structurally embedded in the Euclidean space. If two meta-
nodes are connected by a large meta-edge, it means that these two structural elements are often
adjacent in the graph and thus, they are good candidates to be merged.

To get the meta-nodes, we embed the original nodes in V into Rd. We then cluster these
embeddings and use the clusters as meta-nodes : Ci = {u ∈ V, cluster(φ(gu)) = i}, where Ci is
the i− th node in G. Choosing the number of clusters and their spread modulates the fuzziness
of the resulting motifs. Meta-edges Ei,j = {(ui, uj) ∈ (Ci × Cj) ∩ E} store the edges in RNA
graphs that go from one cluster to another. This process is illustrated in Figure 4.1. Building
the meta-graph requires RGCN inference and clustering over V, and iterating through all edges
in G. With linear-time clustering techniques (like k-Means [MacQueen et al., 1967] or Gaussian
Mixture), building the meta-graph is therefore done in time O(|V|+ |E|).

This meta-graph data structure helps us merge clusters together based on their connectivity.
Merging meta-nodes C1 and C2 results in a 2-meta-node which contains all subgraphs in C1

that are connected to a subgraph in C2. These subgraphs are indexed in the meta-edge E1,2.
However, inferring the connectivity of the merged meta-node is not trivial. Indeed, the neighbors
of a merged meta-node are not the union of the neighbors of its constituent meta-nodes, since
we retain only a subset of the graphs of each merged meta-node. This problem is illustrated
in Figure 4.2 where the merged meta-node BC is not connected to A despite A and B being
connected. To address this problem, we only consider adding 1-meta-nodes to an arbitrary meta-
node. This is not a limitation for our algorithm and is more compatible with our formalism. We
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implement a merging algorithm presented in Algorithm 1.

Algorithm 1: Merging Algorithm. We merge a meta-node S with a 1-meta-
node C, through a meta-edge E.

Data:

• Meta-node S

• Meta-edge E from S to C

Result: T , an expanded S along E
1 T ← ∅
2 foreach (v1, v2) ∈ E do
3 foreach nodeset ∈ S do
4 if {v1, v2} ∆ nodeset 6= ∅ then
5 T ← T ∪ {nodeset ∪ {v1} ∪ {v2}}
6 end

7 end

8 end
9 return T

4.3.4 Retrieving known motifs

The first use of the meta-graph data structure is to retrieve subgraphs similar to a query sub-
graph. Given a query subgraph Q and a large disconnected graph G, the task is to identify all
hits : subgraphs H ∈ G which maximize similarity to the query. The idea of the algorithm is to
use the ’alignment’ of the RNA graphs induced by the embeddings (Figure 4.1) to efficiently
search for similar structures. Such an algorithm can identify subgraphs that resemble known
motifs but which were not identified by tools imposing strict isomorphism [Cruz and Westhof,
2011; Zhong and Zhang, 2015; Zhong et al., 2010].

Using the RGCN, we place the query graph in the embedding space, which induces a query
meta-graph Q. This meta-graph is a subgraph of G, each query meta-node is defined by the
cluster assignment of the embedding of each nucleotide of the query graph. Then for each edge
in the query graph, we add a meta-edge between its corresponding meta-nodes. Let ci be the
centroid of a meta-node Ci. We can directly obtain a compatibility score between a query meta-
node q ∈ Q and a hit node h ∈ G : score = 〈φ(gh), cq〉. We start with all nodes in a meta-node
of Q, as one-node hits. The one-node hits and their scores are added to a set R.

To expand the match, we iterate through the edges of the Q and merge any two elements of
R that fall along the current edge. We do so by using the aforementioned merging algorithm.
We can think of this step as iteratively building bigger and bigger sub-graphs of G that match
the template provided by Q. Any merge operation increases the score of the resulting set by
summing the score of the merged elements. If a hit encompasses all nodes in the query, it will

0∆ represents the symmetric difference of two sets. Here, it indicates if precisely one of the nodes is already
in the nodeset.
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have undergone the most merging operations and obtain a maximal score. However, if a hit
misses one node or has a somewhat different structure, we still retrieve it with a sub-optimal
but high score. This retrieval procedure is detailed in Algorithm 2.

Algorithm 2: Motif Instances Retrieval. We traverse the edges of the graph
Q and the meta-graph identifying connected subgraphs which match query
embeddings.

Data:

• Meta-graph G = (C, E)

• Original RNA graphs G = (V,E)

• Query multi-graph Q

Result: R : Motif instances candidates : a set of subgraphs
and their associated scores

10 R ←
⋃
C∈Q

C

11 foreach E in Q do
12 T ← merge(R, E)
13 R ← R∪ T
14 end
15 return R

The algorithm remains tractable thanks to the sparsity of the meta-graph that allows efficient
iteration through edges, efficient set operations to expand motifs and graph-based separation
of the candidate hits. A theoretical analysis of the complexity depends heavily on both the
topology of the meta graph and of the query graph and is explained further in Supplementary
Section D.6. We observe that in practice, this algorithm runs in an average of 10s on a single
i7-10610U core.

4.3.5 Mining new motifs

We can leverage a similar strategy to the retrieve procedure when mining motifs de novo. The
basic intuition of our algorithm, Motif Aggregation Algorithm (MAA) is again that the set of
nodes assigned to a given cluster can be considered to be a motif of cardinality 1 (a 1-motif).
We can then use the meta-graph to identify clusters with connections to the current motif set
to build larger motifs. Because we lack the guidance of the query, instead of merging just along
one meta-edge, we merge along all meta-edges in the meta-graph and filter results based on a
user-defined minimal frequency δ.

As an example, starting with a 1-motif e.g. the set of subgraphs in cluster A, we can create
2-motifs by merging every other cluster in its meta-graph neighborhood, X ∈ N (A). We then
identify the new 2-motifs from their constituent meta-nodes. This process can then be iterated
to discover k-motifs. This is illustrated in Figure 4.2 and outlined in detail in Supplementary
Algorithm 6.
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Figure 4.2 – MAA Illustration : Meta-nodes A,B and C get merged into three 2-Meta-nodes
AA, AB and BC. Then new meta-edges are computed that link singletons A and B with 2-meta-
nodes AB and AA respectively. A second merge follows these links and yields the 3-meta-node
AAB. Node colors here are a proxy for node ID, and not tied to the cluster IDs (A, B, C).
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Given the state of the meta-graph G at step k, identifying all instances of a single (k + 1)
motif requires a single merge operation between two meta nodes, with complexity O(n). The

number of all such possible (k + 1) motifs in the worst case is O
((|C|

k

))
which is the number of

choices of (k+1)-size meta nodes. However, this is a loose bound since in practice, the number of
acceptable motifs is constrained by the sparsity of G at k = 0 and the minimum motif frequency
δ. Empirical complexity depends strongly on hyper-parameters choices but is on average a few
minutes on a single i7-10610U core.

4.4 Results

Our tool relies on graph representation methods to drastically improve the scalability of motif
mining and facilitate fuzzy matching of motifs. We first evaluate the quality of our RNA-specific
similarity functions and subsequent embeddings (Section 4.4.1) and show that structural infor-
mation is faithfully encoded. Following this, we show that our approach can consistently retrieve
existing motifs (Section 4.4.2) while also uncovering new fuzzy motifs (Section 4.4.3). Through-
out the evaluation of the tools, we use Graph Edit Distance (GED) [Bunke and Riesen, 2008]
as an external (and costly) oracle to select a similarity function, assess embedding quality, and
motif consistency. For more details on GED definition and implementation see Supplementary
Section D.2.

4.4.1 Subgraph Comparisons and Embeddings Correlate with GED

We sample 200 rooted subgraphs of radius 1 and 2 uniformly at random from G. We recall
that the radius of a graph is the maximum length shortest path between any two nodes in this
graph. Next, we compute all-to-all GED on this sample, yielding 20,000 non trivial values for
each radius. We then compute similarities on the same set of subgraphs using various choices of
sG and φ. In Supplementary Table D.1 we summarize the resulting Pearson correlation values.

Under these metrics, the best performing method performs a matching over ordered sets of
smaller graphs known as graphlets, for more details see Supplementary Section D.3. It gets an
almost perfect correlation at a radius of one and 0.52 at a radius of two. Since we consider fuzzy
motifs to consist of graphs with slight variations, performance on similar graphs is more relevant.
On pairs of graphs with low GED to each other, we obtain higher correlations of 0.637 on the
radius-two subgraphs. Next, we train a 2-layers RGCN using this similarity function and obtain
a thresholded correlation value of 0.74 with the GED values. Therefore, the dot product of
our embeddings approximates structural similarities. Moreover, we note that the running time
of a comparison becomes negligible, as it amounts to a dot product. To simplify downstream
analysis, we take advantage of the strong correlation and use only 1-hop rooted subgraphs. Full
results are available in Supplementary Table D.1.

We complete our report of the performance assessment of the embeddings with a visual
representation of the results. In Figure 4.3, we generate a 2D projection of the local RNA
structures from the learned embedding with t-SNE [Maaten and Hinton, 2008]. We draw example
subgraphs corresponding to a sample of clusters.

Visually, we observe that similar subgraphs lie in the same clusters. Additional quantita-
tive metrics are provided in the Supplementary Section D.5. This validation provides us the
structural building blocks to assemble and retrieve motifs.
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Figure 4.3 – t-SNE projection applied to embedding space. Drawn rooted subgraphs correspond
to an example from the cluster connected by a dotted line. Point colors correspond to the
nearest mixture model component.
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4.4.2 Retrieval Algorithm Expands Known Motifs

Next, we turn to the validation of the retrieval algorithm. Given a query graph, the retrieve
algorithm returns a list of subgraphs of G, denoted as “hits”, in decreasing order of compatibility
to the query. We run the algorithm on our validation set of motifs (motifs identified by RNA 3D

Motif Atlas [Petrov et al., 2013b], rna3dmotif [Djelloul, 2009], and CaRNAval [Reinharz et al.,
2018a]), filtered for sparsity (more than 3 instances) and size (more than 4 nodes), resulting in
285 motifs. For a given known motif, we perform a retrieve with two types of queries: a true
instance of the motif, and an instance of another randomly chosen motif (decoy). We show the
resulting ranks in Table 4.1. The hit list contains a few good hits and a long tail of very small
hits. We see that when queried with a true instance, the algorithm retrieves other instances in
97% of the cases, with the average rank in the top 5%. When queried with a decoy, the success
rate drops to 83%, with an average rank at the 24th percentile of the hit list, indicating that
only partial solutions were retrieved.

Method Success Rate Normalized rank

True query 97% 5,6%
Decoy query 83% 23%

Table 4.1 – Comparison of the performance of the retrieve algorithm when used with a query
instance vs. a random one. Success rate denotes the rate at which the instance is in the hit
list. The rank denotes the rank in the list, normalized by its length (lower is better).

We can go further by analyzing the structure of the retrieved hits. A first way to do so is to
plot several hits with increasing ranks (Figure 4.4). A visual inspection of the results indicates
that the retrieved graphs differ more and more as we plot hits with decreasing scores. A more
quantitative way to do this is to compute the mean GED value of hits at fixed ranks compared
to their respective queries. Since the motifs contain up to 15 nodes, the GED computation is not
always exact and can yield high running times with incorrectly high values. We discard motifs
that reached the GED timeout and end up with a set of 140 motifs, for which we present the
mean GED with their hits in Table 4.2. For comparison, we also include the GED to a decoy
corrected to match the size of the query. Sometimes, the best hits are not exactly isomorphic but
happen in a more similar context than other isomorphic graphs, resulting in closer embeddings
for the nodes at the border of the motif. This happens more frequently for larger graphs and
explains why the GED is not a hard zero, but we see that it is very significantly shifted towards
lower values. Based on both of these results we claim that our method is able to retrieve sets of
subgraphs where the GED to the query correlates with the retrieval rank.

Rank 1st 10th 100th 1000th Decoy

Mean GED 3.1± 0.3 3.9± 0.4 6.2± 0.6 9.2± 0.8 14.4 ±0.8

Table 4.2 – Mean GED with standard errors between motifs queries and their hits at fixed
ranks. We also included mean GED values to other random motifs as a control.

The average number of instances of a motif across rna3dmotif, RNA 3D Motif Atlas, and
CaRNAval is only 22.3. Interestingly, the fact that we are able to obtain up to 100 hits with a
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Figure 4.4 – Hit graphs with decreasing rank to the query. Red nodes indicate matches to the
query.
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a Distributions of GED for
subgraphs sampled within the
same motif (intra) and across
motifs (inter).

b Four instances from three random VeRNAl motifs that did
not overlap with external motifs. Each root node’s color corre-
sponds to its cluster ID.

Figure 4.5 – VeRNAl motif quality, as measured by GED, and sample novel motifs.

low GED indicates that many of these represent an ensemble of highly similar structures that
are missed by existing tools. This observation suggests that our method can be used not only
to assess if we find known instances of a motif, but also to identify fuzzy instances of these well
known motifs.

4.4.3 MAA Identifies Novel Fuzzy Motifs

Finally, we assess the quality of the MAA procedure to identify de novo motifs. Of course, there
are many choices of hyperparameters which are ultimately application-dependent (fuzziness,
motif frequency, size, etc.). We require a minimum frequency of 100 instances per motif, as well
as a maximum cluster spread of 0.4 in units of Euclidean distance. Finally, we remove a motif
if more than 80% of its instances are included in a bigger motif, to enforce maximality of the
retrieved results. We obtain a set of 3,496 motifs up to cardinality 7. Supplementary Table D.4
shows the average number of instances and number of motifs at each cardinality.

To check for internal consistency, we compute the intra- and inter-motif GED between a
random sample of 20 motifs and plot the results in Figure 4.5a. We obtain an intra-motif GED
of 7.27 ± 7.63 and an inter-motif GED of 16.78 ± 5.42 when comparing motifs of the same size.
This shows that VeRNAl finds motifs with internal consistency.

Next, we measure the degree to which our motif set agrees with existing motif databases.
Since our approach is a generalization of RNA motifs (with γ ≤ 1), we expect that known
motifs would form a subset of VeRNAl motifs. Indeed, we find that a subset of our motifs aligns
well (at least 60% overlap in number of nucleotides) with all databases, with a total of 82% of
known motifs being found as VeRNAl motifs (detailed results in Supplementary Table D.5). In
the heatmap of Supplementary Figure D.5, we plot the percentage of nodes of a known motif
(RNA 3D Motif Atlas (alias: Atlas), CaRNAval, and rna3dmotif) that can be found in any
of our motifs of the same size. Noticeably, our tool automatically retrieves motifs previously
identified using several different constraints, methods and objectives. Indeed, CaRNAval focuses
on motifs with long range interactions, while Rna3Dmotif targets motifs within loops. It shows
that our framework unifies previous approaches but also expands their reach. Additionally, the
VeRNAl motifs that match known motifs feature many more instances, again suggesting that we

73



CHAPTER 4. VERNAL

are able to expand the set of known motif instances. Finally, despite no runtime being reported
by CaRNAval, the authors indicated through personal communications that their analysis ran in
about 300 hours. By contrast, VeRNAl used about one hour of training (once) and a couple of
minutes for running the clustering algorithm.

Since our motif set is significantly larger than those presented by existing methods, it is
possible that the tool is uncovering novel motifs and exploring new regions of the structure space.
A cursory examination of randomly sampled motifs reveals potentially interesting relationships
between RNAs of varying functional roles. For example, motif ID: 869 (drawn in Figure 4.5b)
contains 191 occurrences, mostly from ribosomal RNA, but interestingly some instances fall in
a viral ribozyme complex (PDBID: 1Y0Q). Similarly, motif ID: 1627 features instances from
ribosomes, as well as the FMN riboswitch (PDBID: 3F2X). An in-depth analysis of all individual
instances is out of the scope of this contribution, but we plot some additional examples in
Supplementary Figure D.6. Nonetheless, all the motifs identified by VeRNAl can be browsed and
downloaded on our web server vernal.cs.mcgill.ca, and are thus available to the community
for further analysis.

4.5 Conclusions

We describe VeRNAl, a novel pipeline for identifying fuzzy graph motifs. We develop various node
structure comparison functions and approximate their feature map using an RGCN, embedding
our graph dataset to a vector space for fast similarity computation between rooted subgraphs.
We show that these computations correlate well with the RNA GED while being significantly
faster. This enables us to find small structural building blocks of RNA and organize them into
a meta-graph data structure.

Using this custom data structure, we introduce two algorithms to retrieve similar instances
to a known query and to discover new motifs. We show that the retrieval procedure enables us
to efficiently identify other instances of known motifs but also to find sets of subgraphs similar
but not identical to a query. The motif extraction algorithm is also successful in mining sets
of subgraphs with low intra-cluster GED, re-discovering and expanding known motifs as well as
introducing new ones. All together, our platform VeRNAl is the first tool to propose fuzzy graph
motif extraction.

The nature of graph convolutions somewhat limits the type of motif that can be detected
by VeRNAl. Since RGCNs perform convolutions of entire neighborhoods around a node, motifs
without a wide-enough conserved core can be lost, as information from outside the motif gets
aggregated together with frequent nodes. Additional tuning of the similarity function radius, or
more advanced message passing methods could address this limitation.

The main focus of this work is to build and validate the algorithm. Yet, a detailed exploration
of the candidate motifs and the impact of the hyperparameters (fuzziness, density, size, etc.) is
left for future work.

The algorithms introduced here are general and the field of subgraphs mining is still rapidly
evolving. We believe VeRNAl could also be applied to other sources of data such as chemical
compounds, protein networks, and gene expression networks to automatically mine for novel
generalized structural patterns.

74

vernal.cs.mcgill.ca
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Implementation

The source code is available at vernal.cs.mcgill.ca. We also provide a flexible interface and
a user-friendly web server to browse and download our results.
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Chapter 5

RNAglib: A python package for RNA 2.5D
graphs

This chapter was made in collaboration with Carlos Oliver, Jonathan Broadbent, William L
Hamilton and Jérôme Waldispühl and was published in Bioinformatics Application Notes in
2022 [Mallet et al., 2022b].
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Abstract

RNA 3D architectures are stabilized by sophisticated networks of (non-canonical) base
pair interactions, which can be conveniently encoded as multi-relational graphs and effi-
ciently exploited by graph theoretical approaches and recent progress in machine learning
techniques. RNAglib is a library that eases the use of this representation, by providing clean
data, methods to load it in machine learning pipelines and graph-based deep learning models
suited for this representation. RNAglib also offers other utilities to model RNA with 2.5D
graphs, such as drawing tools, comparison functions or baseline performances on RNA ap-
plications.
The method is distributed as a pip package, RNAglib. The source code, data, and documen-
tation is available at rnaglib.cs.mcgill.ca.

Résumé

Les structures tridimensionnelles de l’ARN sont stabilisées par des réseaux sophistiqués
d’interactions (non-canoniques) entre paires de bases, qui peuvent se représenter comme des
graphes multi-relationnels, à leur tour exploités efficacement par des méthodes issues de la
théorie des graphes ainsi que de recents developpements en apprentissage machine. RNAglib
est une librairie qui vise à faciliter l’adoption de cette représentation, en fournissant des
données nettoyées, des méthodes pour les utiliser dans un pipeline d’apprentissage et des
modèles d’apprentissage profond sur graphes, adaptés à cette représentation. RNAglib inclut
aussi d’autres fonctionnalités utiles à cette représentation, comme des outils de dessin, des
fonctions de comparaison ou des pipelines de bases pour des problèmes classiques sur l’ARN.
Nous proposons l’outil comme un package pip, RNAglib. Le code source, la documentation
et les données sont disponibles à l’adresse : rnaglib.cs.mcgill.ca.
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5.1. INTRODUCTION

5.1 Introduction

Recent developments in machine learning and deep learning techniques enable us to leverage the
vast amount of biological data, such as sequencing data or biochemical assays, publicly released
and organized by the community. This allowed breakthroughs in many areas, including the
prediction of protein 3D structures with AlphaFold [Jumper et al., 2021].

These progresses allow the structural biology community to address new critical challenges,
previously out of reach and far from the spotlight. This is particularly the case for RNAs. RNA
is a highly structured molecule that supports many regulatory and enzymatic functions beyond
its well-known messenger role [Fire et al., 1998; Makunin, 2006]. As such, it is a promising class
of therapeutic drug targets [Crooke et al., 2018; Yu et al., 2020] as illustrated by novel treatments
of CMV retinitus patients with AIDS [Hutcherson and Lanz, 2002] or the production of self-
amplifying vaccines, which has recently seen a high-level of success in clinical trials for COVID-19
[Fuller and Berglund, 2020]. Because of the limited (but growing) amount of structural data
available for RNAs, the task of designing robust machine learning methods to predict RNA 3D
structures is more challenging than for proteins. However, RNA folding relies on a remarkable
hierarchical organization of its structure. From our capacity to efficiently use this information
will depend the success of machine learning applications. Representing objects as graphs is a
strong prior knowledge and graph neural networks have shown to induce significant performance
boosts in many applications.

To capture the tertiary structure of RNA in a computationally feasible manner, a growing
number of algorithms make use of 2.5D graph networks - sometimes coined with the equivalent
term Augmented Base-Pairing Networks (ABPN) [Djelloul and Denise, 2008; Oliver et al., 2020,
2022; Reinharz et al., 2018b; Sarrazin-Gendron et al., 2019]. These networks represent RNA
molecules as topological graphs, whose nodes are nucleotides and whose edge types are structural
categories of interactions between nucleotides. We have previously successfully combined the
2.5D graph representation with graph neural networks to predict small molecule binding [Oliver
et al., 2020] and believe that their wider adoption is limited by the lack of dedicated software
to use this representation, such as rna-tools [Magnus et al., 2020] for 3D representations. To
our knowledge, the Python package forgi is the only effort in streamlining research on RNA
networks. However, it focuses on coarse-grained models based on secondary structure elements
instead of base-pair interactions and does not include machine learning features.

Contribution

We present a PyPi package, RNAglib, that aims to fill that gap by providing utilities to represent
the structure of RNA as 2.5D graphs. These graphs are implemented as networkx [Hagberg et al.,
2008] objects and an example of such a graph along with the different attributes it contains is
shown in Figure 5.1. RNAglib provides clean data available for download along with loading,
encoding and splitting routines. It also provides structural comparison functions that help
unsupervised pre-training, and default models to learn RNA properties such as small-molecules
or protein binding: we offer a benchmark performance for these tasks. Finally, RNAglib offers
utility scripts to save, preprocess or plot graphs so that the manipulation of the data for research
is facilitated.
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4nlf

4nlf
4nlf

Figure 5.1 – 2.5D graph representation of the 23S ribosomal RNA Sarcin Ricin Loop (PDBID:
4NLF). Left panel shows the output of the drawing tool with default settings. Grey boxes are
added later to depict a few of the attributes of the graph object, its nodes and its edges.

5.2 Data collection and graph processing

We collect and update (on a bi-monthly basis) a set of all RNA structures published in the
RCSB Protein Data Bank (3739 graphs and 6,086,589 nucleotides) in the form of 2.5D graphs
on our server. This procedure is detailed in Supplementary Section 5.6.1. These graphs contain
information in each node (such as the nucleotide type or chemical modifications), edge (such as
the Leontis-Westhof classification [Leontis and Westhof, 2001]) and also at the level of the whole
graph, such as resolution. This data can be downloaded directly or through our python package.

Equipped with this data, the user can specify which node or edge features need to be included
in the graph representation. The user can also choose a specific target for the machine learning
algorithm, and we provide an automatic data splitting routine to test the trained models. Finally,
pre-computations enabling fast subgraphs comparisons are run and also available for use for
instance in unsupervised learning settings.

5.3 Machine Learning

In recent years, graph machine learning tasks are predominantly using graph neural networks.
The first standardized pipeline we offer is the use of kernel functions for unsupervised machine
learning [Hamilton et al., 2017a]. Unsupervised machine learning settings rely on functions which
can compare data points and circumvent the need for annotated data during training. We have
implemented several structural kernels introduced in [Oliver et al., 2022] (see Supplementary
Section 5.6.2), along with dedicated data loaders to conduct the data processing specifically for
this unsupervised task. RNAglib then enables the users to easily combine supervised learning and
unsupervised phase, by adding a classification head (extra layers) on the top of the unsupervised
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model. Both parts of this training scheme can be conducted simultaneously, with a loss for each
component.

5.4 Utility functions

Along with these machine learning features, we also include several functions to facilitate the
handling of RNA 2.5D graphs. For instance, RNAglib includes scripts to trim dangling nu-
cleotides, perform statistics on the data or cut a big graph into smaller coherent ones. RNAglib
also comes with an RNA Graph Edit Distance, the gold standard of graph comparisons, as well
as drawing tools customized for 2.5D RNA graphs.

Because RNAglib comes with a principled way of loading and learning on graphs, we antici-
pate it can become a reference benchmark for RNA bioinformatics, but also for graph machine
learning practitioners. We include a first baseline on predicting several node and edge-level
properties, detailed in Supplementary Section 5.6.3

5.5 Conclusion

We present RNAglib, a set of tools to manipulate graph representations of RNA 3D structures,
and use it to conduct machine learning and visualization tasks. We provide the graph ma-
chine learning community with a novel and challenging data set to develop and benchmark new
methodologies. Not only is it solving a real world problem, it is also a data set whose core signal
lies in the graph topology and the edge types, an original setting compared to current graph
data sets. Simultaneously, we provide the structural RNA community an interface to use graphs
and machine learning, hopefully helping this community to better solve RNA challenges.

5.6 Appendix

5.6.1 Data preparation

We collect and update (on a bi-monthly basis) a set of all PDB structures containing RNA on our
server. We include a redundancy reduced subset of graphs based on a list of integrated functional
elements curated by the RNA BGSU group (version 3.145; or latest) [Petrov et al., 2013a]. The
full data contains 3739 graphs and 6,089,589 nucleotides, while the non redundant one contains
899 graphs with 210616 nucleotides. We then use the annotation software x3dna-dssr [Lu
et al., 2015] to compute annotations for all structures. We complement these annotations by
adding ion, small-molecule and protein binding using BioPython [Cock et al., 2009]. With
this collection of annotations we construct annotated directed 2.5D graphs using the networkx

package [Hagberg et al., 2008]. All of these graphs are stored on our servers. The successive
releases are available for download. Finally, we provide tools for converting these graphs into
the two most established frameworks for machine learning on graphs : PyTorch [Paszke et al.,
2019] and DGL [Wang et al., 2019]. Descriptions of the data structure, attributes and examples
of processing pipelines are detailed in the documentation.
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5.6.2 Rooted Subgraph Kernels

To compare small rooted subgraphs is useful to produce embeddings in an unsupervised way.
Indeed, we can train a neural network to approximate the implicit feature map induced by such
a kernel. This strategy to obtain embeddings was validated in a general setting [Hamilton et al.,
2017b] as well as in RNA [Oliver et al., 2020].

We have implemented the kernels described in [Oliver et al., 2020] and refer the reader to
the paper for a detailed explanation. For convenience, we also include a shorter description
here. We define kernels between pairs of rooted subgraphs, gu and gu′ (subgraphs with all nodes
less than a fixed number of edges away from a node). We propose two main classes of kernels:
ring-based, and matching-based kernels.

Ring-based kernels The first functions we consider are a weighted sum of a distance between
l-hop neighborhoods, that we call rings. Rings are the set of edges at distance l from the root
node u and are formally defined as Rlu = {(u′, w) : δ(u, u′) = l ∀(u′, w) ∈ E}. Let d be a
normalized similarity function between two sets of edges. Let 0 < λ < 1 be a decay factor to
assign higher weight to rings closer to the root nodes, and N−1 be a normalization constant to
ensure the function saturates at 1. Then we can obtain a structural similarity for the rooted
subgraphs around u and v as : kL(u, v) := N−1

∑L−1
l=0 λld(Rlu, R

l
v)

The main degree of freedom is in the choice of a matching function d. The first kernel (R_1)
simply computes the intersection over union score between the histograms fR of edge labels
found at each ring.

We have then used a matching algorithm to make a more subtle matching. Indeed, some
geometrical relationships are more similar to others, a notion known as isostericity [Stombaugh
et al., 2009]. We rely on the Hungarian [Kuhn and Yaw, 1955] algorithm to optimally match
the edges of two rings being compared, which yields the second kernel: (R_iso).

Matching-based kernels The ring based decomposition encodes the prior that the surrounding
of a node can be compared only in concentric rings. However, in the case of a bulge for instance,
we might want to remove this constraint. To compute the hungarian kernel, we compute a
hungarian matching over all nodes in the rooted subgraph, but we add in this comparison a cost
for matching nodes that are at a different distance from the root node.

Graphlet kernels Since the degree of our graphs is strongly bounded (max degree 5), we can
define a graphlet as a rooted subgraph of radius 1 and obtain a manageable number of possible
graphlets. We can then replace the edges we previously compared in the methods above with
graphlets. To compare these graphlets, we rely on GED computations. While the GED com-
putation is tractable for such small graphs, it is still expensive when repeated many times. For
this reason, we implement a solution caching strategy which stores the computed GED when it
sees a new pair of graphlets, and looks up stored solutions when it recognizes a previously seen
pair.

When replacing edges with graphlets in the ring-based kernel, we get the R graphlet method,
while when doing so in the matching method, we get the graphlets method.
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5.6.3 Benchmark preliminary results

Several properties of RNA molecules can be predicted from their structure as well as their 2.5D
representation. This is the main function of RNAglib and we have built some example pipelines
on how to select the relevant nucleotide feature and use them to predict several interesting
properties. Because it comes with a principled way of loading the data and using it, we anticipate
it could also become a benchmark for methodological contributions on RNA function prediction.

The first two tasks we include as example are the binding of RNA with a protein partner or
a small molecule. To get the data for these two tasks, we use the ‘SNAP‘ mode of x3dna-dssr
with default settings to extract interface information. For the protein interactions, this results
in 108821 nodes interacting with a protein in 641 graphs. For the small molecule binding, this
results in 722 nodes interacting with a small molecule in 151 graphs. Chemical modification is
a good indicator for solvent accessibility. The default output of x3dna-dssr includes chemical
modification boolean values for every residue. We get 1417 modified nodes in 247 graphs. All
of these figures are computed on the non-redundant set, but this could be changed, for instance
to include interaction of a redundant pocket with several small molecules partners. We then
frame these three tasks as a binary node-level prediction (binds or does not bind), and we load
a certain fraction (0.2) of decoy graphs that do not contain positive nodes. Finally, the link
prediction is an edge-level task, where the network is asked to predict whether two nodes are
indeed connected in the graph. We have re-used the train/test split for protein binding here as
we are using the core structure of the graphs so there is no easy domain splitting.

The results presented in this section result from training a single embedding network with
two layers of size 64 and the ’R graphlets’ kernel in an unsupervised way. We then used this
embedding network for all downstream tasks. For the node-level tasks, we simply add an extra
convolutional classification layer to map these embeddings to node classification prediction. The
resulting network (concatenation of pretrained embedder and classification head) was fine-tuned
independently for each task. For the link prediction we use the pretrained embeddings to create
a pairwise dot product of the node embeddings. We then use true and negative edges and fit the
dot product values to the presence or absence of an edge. Because all of our predictions output
a binary prediction, we use the Area under the Receiving Operator Curve as a metric. This
procedure is illustrated in the files : examples/second_example.py and examples/third_-

example.py of our git repository. Our results are presented in Table 5.1. We intend to keep
a leaderboard of the performances on these tasks to stimulate the methodological research on
RNA 2.5D graphs. If you manage to beat the state-of-the-art on one of those tasks using our
splitting procedure and with a reproducible script, we will reference your work and update the
leaderboard.

Task : Protein Binding Small-molecule
Binding

Chemical
Modification

Link Prediction

AuROC 0.63 0.60 0.75 0.93

Table 5.1 – Area under the Receiving Operator Curve of a baseline machine learning model on the different
tasks of the benchmark. These should be considered as a starting point by practitioners
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InDeep: 3D fully convolutional neural net-
works to assist in silico drug design on
protein-protein interactions
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Abstract

Motivation: Protein-protein interactions (PPIs) are key elements in numerous biological
pathways and the subject of a growing number of drug discovery projects including against
infectious diseases. Designing drugs on PPI targets remains a difficult task and requires
extensive efforts to qualify a given interaction as an eligible target. To this end, besides the
evident need to determine the role of PPIs in disease-associated pathways and their experi-
mental characterization as therapeutics targets, prediction of their capacity to be bound by
other protein partners or modulated by future drugs is of primary importance.
Results: We present InDeep, a tool for predicting functional binding sites within proteins
that could either host protein epitopes or future drugs. Leveraging deep learning on a cu-
rated data set of PPIs, this tool can proceed to enhanced functional binding site predictions
either on experimental structures or along molecular dynamics trajectories. The benchmark
of InDeep demonstrates that our tool outperforms state of the art ligandable binding sites
predictors when assessing PPI targets but also conventional targets. This offers new oppor-
tunities to assist drug design projects on PPIs by identifying pertinent binding pockets at or
in the vicinity of PPI interfaces.
Availability: The tool is available on GitLab at :
gitlab.pasteur.fr/InDeep/InDeep.

Résumé

Motivation : Les Intéractions Protéine-Protéine (IPP) représentent des composantes capi-
tales pour de nombreuses voies biologiques et sont la cible de nombreux projets de découverte
médicamenteuse par exemple contre des maladies infectieuses. La conception de médicaments
à cibles IPP reste un problème délicat et nécessite un travail minutieux pour qualifier une
interaction comme cible potentielle. Au-delà du besoin d’identifier les IPP qui interviennent
dans les voies de chaque maladie et leur caractérisation expérimentale comme cibles théra-
peutiques, il est primordial de pouvoir prévoir leur capacité à se lier à d’autres protéines ou
à d’éventuels modulateurs.
Résultats : Nous proposons l’outil InDeep pour prédire sur une protéine les sites d’inter-
actions fonctionnels avec des épitopes protéiques ou des médicaments. En exploitant une
base de donnée spécifique avec des méthodes d’apprentissage profond, cet outil améliore la
prédiction de tels sites sur des structures statiques ou le long d’une trajectoire de dyna-
mique moléculaire. A travers un benchmark contre des méthodes existantes, nous montrons
qu’InDeep améliore l’état de l’art sur les prédictions de site de liaison sur les cibles IPP mais
aussi sur les cibles traditionnelles. Notre outil ouvre donc la porte à de nouveaux projets de
découverte médicamenteuse sur IPP, en identifiant les poches de liaison dans ou à proximité
des interfaces IPP.
Disponibilité : L’outil est disponible sur GitLab à l’adresse :
gitlab.pasteur.fr/InDeep/InDeep.
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6.1. INTRODUCTION

6.1 Introduction

Protein-protein interactions as therapeutic targets. Protein-protein interactions are central
elements in numerous biological pathways. They represent increasing interests as therapeutic
targets, with a growing number of published studies describing the successful modulation of
PPIs using small molecules [Torchet et al., 2021]. Yet, identifying chemical probes or drugs on
PPIs remains a difficult task. As opposed to more conventional drug discovery targets, such
as G-protein coupled receptors (GPCRs) or enzymes and more recently protein kinases, PPIs
have not evolved to bind small molecules. Therefore, the proof of their ligandability has to be
made on a case by case scenario [Sperandio et al., 2010]. Indeed, the design of small molecules
binding orthosterically at the interface to prevent protein interactions is not achievable for all
PPIs [Lu et al., 2020]. Given their number and heterogeneity of structures, it is therefore of
primary importance to have powerful tools to efficiently evaluate the feasibility of considering
PPIs as targets in complement of the unavoidable biological evaluations.

In the situation of designing orthosteric inhibitors of PPIs (iPPIs) using small molecules,
strategies like epitope mimetics can be envisaged [Ashkenazi et al., 2017]. This was successfully
made against the B-cell lymphoma-2 (Bcl-2) family to combat chronic lymphocytic leukaemia
[D’Aguanno and Del Bufalo, 2020]. This led to the development of Venetoclax which was
approved by the FDA in 2016 as the first orthosteric PPI drug. The design of iPPIs implies
to evaluate two complementary features within the interface: 1) the knowledge of an epitope
binding at the interface and the presence of hotspot residues that carry out most of the binding
energy of interaction [Clackson and Wells, 1995], and 2) the existence of a ligandable binding
site around these hotspots that could host a small molecule.

Predicting and profiling epitope binding sites.

Several in silico tools can predict hot spot residues within PPIs [Krüger and Gohlke, 2010;
Tuncbag et al., 2010] but they necessitate the structure of a complex and the fore knowledge
of an identified protein partner. To predict protein interactions, some tools directly use the
sequence information [Murakami and Mizuguchi, 2010] or evolutionary data [Cong et al., 2019].
However, leveraging the structure of the protein has shown to drastically increase performance
of prediction of interface regions. Moreover, structural motifs and local arrangements of atoms
can be highly conserved even across different secondary structures and different global protein
folding. These local motifs are hypothesized to be the key element of partner binding. This has
motivated using convolutional strategies to encode such local information about binding sites.
Some of these methods focus on predicting the interaction patch on the protein: i.e. determine
which residues are involved in an interaction [Dai and Bailey-Kellogg, 2021; Gainza et al., 2020].
Some methods also take as input the partner to predict the interaction patch [Dai and Bailey-
Kellogg, 2021], deemed as partner-specific predictions. In that case, the prediction can be
more fine-grained and also provide contact prediction: which residue interacts with which other
[Sanchez-Garcia et al., 2019; Townshend et al., 2019]. All of these tools annotate the sequence
by predicting residue-level information. However, knowing not only which residues are involved
in the binding (sequence or surface derived info) but which types of partner residues and where
they bind in the vicinity of the protein surface is highly desirable to understand the mechanisms
of epitope binding or the design of future drugs mimicking these epitopes.

Predicting ligandable binding sites within PPIs. A plethora of tools is now available to
predict binding sites and binding site ligandability. One can cite historical and efficient geomet-
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ric based methods such as Fpocket [Guilloux et al., 2009], VolSite [Da Silva et al., 2018] and
mkgridXf [Monet et al., 2019], fragment-based methods like FTMap [Kozakov et al., 2015] and
more recent and powerful methods using deep learning such as DeepSite [Jiménez et al., 2017],
P2rank [Krivák and Hoksza, 2018], Kalasanty [Stepniewska-Dziubinska et al., 2020], DeepSurf
[Mylonas et al., 2021], or OctSurf [Liu et al., 2021], with Kalasanty being a reference in the field.
These methods have demonstrated their predictive capacity to identify ligandable binding sites
on conventional drug targets. Although FTMap was the first method to raise the question of PPI
ligandability without really providing a ligandability score, none of the methods cited above is
specific to the ligandability of PPIs. Nonetheless, interfaces of PPIs are historically described as
rather flat, large and devoid from deep binding pockets [Arkin et al., 2014]. It is therefore most
legitimate to anticipate a specific form of ligandability in the case of PPIs. There are numerous
examples of co-crystallized orthosteric iPPIs [Torchet et al., 2021]. Using machine learning and
PPI-specific data sets, we can expect to address the specificity of PPIs ligandability.

Capturing holo-likeness along MD trajectories. PPIs are known to undertake important
conformational changes depending on their binding state: apo, holo with ligand or a protein
partner. These conformational changes affect the shape and binding capacity of interface bind-
ing pockets [Johnson and Karanicolas, 2013]. It is therefore of primary importance to take
these conformational changes into account when profiling epitope and ligandable binding sites
[Kozakov et al., 2015] as those will condition binding to partners. This represents a major
challenge when attempting to identify chemical probes, using in silico methods such as virtual
screening or designing epitope mimetics, in the absence of the partner bound. Indeed, it is for
example key for such methods to sample and identify so-called holo-like conformations prior to
virtual screening in the context of ensemble docking [Amaro et al., 2018; Ivetac and McCammon,
2012]. Previous works have addressed the holo-like sampling challenge using MD simulations
with methanol solvent. The use of a less polar solvent than water favors the opening of tran-
sient hydrophobic pockets, resulting in an improvement of docking results [Eyrisch et al., 2012].
Other methods have already been developed to monitor ligandability along molecular dynamics
trajectories using geometric [Guilloux et al., 2009], or Deep Learning approaches [Kozlovskii and
Popov, 2020], although none of these are specific to PPIs. Moreover, no method is available to
monitor interactability patches and epitope binding sites along molecular dynamics trajectories.

Contribution. Our work builds upon our last release of iPPI-DB [Torchet et al., 2021] and of
its new target-centric mode, and aims to facilitate the identification of iPPIs. Our tool InDeep
has capitalized on iPPI-DB structural data to train predictive models relying on neural networks
with a 3D fully convolutional U-Net architecture. It is a unified multi-tasking prediction tool
that uses the 3D structure of proteins to predict ligandable binding for iPPIs and so-called
interactability patches for epitope binding. We show that InDeep outperforms the state of the
art of binding pockets detection methods and that our tool is especially efficient to detect iPPI
and epitope binding sites. While remaining competitive on annotating the protein sequence
with interactability, it also predicts the spatial location of its putative partner. Our tool also
enables tracking of these druggability and interactability scores for a given detected pocket along
molecular dynamics trajectories. It is integrated in a PyMol [DeLano et al., 2002] plugin (see
Supplemental - Section E.7) for easy visualization of the predictions, making it a real toolbox
for iPPI drug design. It is freely available at https://gitlab.pasteur.fr/InDeep/InDeep.
Finally, the results of InDeep predictions (before post-processing) can be consulted on the iPPI-
DB website for every heterodimer and iPPI-bound protein in the database at https://ippidb.
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pasteur.fr/targetcentric/.

6.2 Methods

6.2.1 Data curation, splitting and representation

For training and assessing the models, we have used the dataset available in the iPPI-DB [Torchet
et al., 2021]. The dataset relies on two subsets: one contains Hetero-Dimeric complexes (HD
interactions) and the other iPPI-bound protein complexes (PL interactions) where ligands bind
one of the two partners at the interface within a HD complex (orthosteric inhibitors). We have
then split this dataset based on CATH [Sillitoe et al., 2021] folds to avoid any structural overlap
between our train, validation and test data sets.

Equipped with these sets of co-crystallized proteins with either a protein or ligand partner,
we wish to represent them in a way a neural network can learn on. We follow the volumetric
CNN framework used, for instance, in [Jiménez et al., 2017; Stepniewska-Dziubinska et al., 2020].
This framework consists in treating the interaction sites as 3D images, whose color channels are
functional atom types. We introduce five functional atom types: α-carbon (Cα), donor and
receptor of h-bonds and positively and negatively charged atoms and hydrophobic/aromatic
atoms. We then put a Gaussian function around each atom center based on its type, and
interpolate its values on a regular 3D grid with 1A spacing. The details and results of these
procedures are described in Supplemental (Section E.1).

6.2.2 Model architecture and learning

We now want to build a model that takes a protein structure as input and predicts iPPI ligand-
ability (PL interaction) as well as protein interactability (HD interaction). These two machine
learning tasks can benefit from the concept of multitasking, a well-documented phenomenon that
means that one hybrid machine learning model that solves two tasks usually performs better
than two separate ones [Goodfellow et al., 2016]. Indeed, in the multitasking setting, each task
benefits from the representations learned using the other task’s supervision. After several shared
layers, our network is split into a PL and an HD branch. These branches are two independent
sequences of layers with a sigmoid and softmax activations for PL and HD respectively. We use
a U-Net [Ronneberger et al., 2015] architecture for our prediction. Our model does not use
fixed-size linear layers (fully-convolutionnal network) which enables it to take any grid size as
input. A visual representation of this branching scheme is available in Figure 6.1 and a detailed
description of the model is available in the Supplementary Section E.2.

We then train the resulting models with batches containing a mix of PL and HD data points.
For memory limitations issues, we used the accumulated gradient trick to use batches of size
greater than one. Since we encode the 3D structure into voxels, the resulting representation is
sparse. Moreover, the key part of the prediction lies in the space surrounding the protein surface
and especially around the position of the true ligand, while having a hard zero inside the protein
or very far from its surface is less relevant. To account for these two points, we use the weighted
versions of cross entropy (CE) and binary cross entropy as the loss L to train our network. All
voxels receive a small weight wbackground of 0.05, then the voxels closer than 6 Å from the surface
receive an additional weight wsurface of 0.35 and finally the voxels corresponding to the target
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Figure 6.1 – Visual representation of InDeep’s architecture.

voxels get an additional value wpartner of 1. We found this weighting scheme to stabilize the
learning and optimized our network with an Adam [Kingma and Ba, 2014] optimizer.

L(ŷ, y) =
∑

(i,j,k)∈Grid

(wbackground
i,j,k + wsurface

i,j,k + wpartner
i,j,k )CEi,j,k(ŷ, y).

6.2.3 Post-processing and optimization

Once equipped with scalar fields prediction, we need to segment them in contiguous regions of
high values. Other approaches have simply used a mean-shift algorithm [Jiménez et al., 2017;
Stepniewska-Dziubinska et al., 2020], but such algorithms can split the prediction, or discard
important neighboring parts of the prediction. To address this segmenting problem, we have
relied on the watershed [Beucher, 1979] algorithm. The watershed algorithm finds all basins
around local minima. We build a graph whose nodes are these basins and whose edges contain
the euclidean distance as well as a normalized value of the lowest saddle point joining two
neighboring basins. Then, we merge the neighboring nodes in a greedy manner, by prioritizing
the ones with the smallest edge. We stop the merging process when the merged nodes exceed a
geometric distance threshold of 15 Å and 20 Å for PL and HD respectively. Each of the resulting
group of basins is denoted as a predicted pocket and scored based on the mean values of its best
150 voxels. Finally, we filter these predicted pockets to remove the smallest or least high-scoring
ones, yielding the final list of predictions.

To choose the optimal values for the hyperparameters of the network and the post-processing
(number of layers, number of neurons per layer, thresholds), we conducted an hyper-parameter
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optimization (HPO). The HPO metric and optimization procedure is described in detail in the
Supplemental (Section E.3). We then ran the HPO for approximately 100 experiments on the
validation set (Supplementary Figure E.2), which gave us our final predictive model.

6.2.4 Molecular Dynamics Trajectory Analysis

To distinguish the conformations with higher ligandability (PL) or interactability (HD) propensity,
the developed model can be used on an ensemble of protein conformations generated by molecular
dynamics (MD). To do so, each snapshot of a molecular dynamics simulation is treated as an
input for InDeep. Therefore, one can specify some residues to InDeep along which to monitor
the ligandability or interactability, resulting in a reduced grid compared to an inference on the
whole protein. Then, the post-processing is simplified because the prediction size is reduced: a
spatial anchor is chosen either by the user or as the point of the grid in the solvent closest to
the grid center. Finally, we simply grow a volume around this anchor following a greedy nearest
neighbor policy. The average value of the voxels in this volume represents a ligandability or
interactability score that can be easily tracked along the MD time steps. We chose a volume
of 150 Å3, close to the cutoff of 100 Å3 used in the study by [Gao and Skolnick, 2013] which
considers that 80% of pockets occupied by ligands are encompassed by this cutoff.

6.3 Results

6.3.1 Prediction of ligandable binding sites

Benchmark of InDeep on conventional target binding sites

Rosell and Fernández-Recio have introduced a method to detect iPPI binding sites that uses
FPocket [Guilloux et al., 2009] along a MD trajectory to detect transient binding sites. These
binding sites are then selected to be nearby potential interfaces based on protein-protein docking
results. However, the docking step requires the structure of the partner, while our method just
uses the structure of the protein meant to be bound. Moreover, these steps require substantial
computing time, making it less suitable for the investigation of several structures. There are
several tools that aim to predict small molecule binding sites, among which Kalasanty is a refer-
ence in the field. In the absence of other iPPI dedicated tools for ligandability, we benchmarked
InDeep against Kalasanty. The other major difference between our tool and Kalasanty, is that
Kalasanty was trained on VolSite predicted cavities in ligand locations, whereas our model has
been trained on ligand position directly. For fairness, we compare the ability of our tool to
predict VolSite predicted cavities as well as the ligand location with Kalasanty.

We use the same dataset as the authors of Kalasanty did for validation: a distinct dataset,
made by Chen et al [Chen et al., 2011]. The original test set is composed of 111 protein-ligand
holo structures and 104 corresponding apo structures. We have filtered out a few systems that
were too similar to our training set according to the TM-score metric [Zhang and Skolnick,
2004] and end up with 187 and 196 pockets evaluation for apo and holo structures respectively.
Ligands coordinates were extracted from the holo structures of the Chen benchmark and VolSite
was used to describe cavities for each ligand, as shown in Supplementary Figure E.3. Following
Kalasanty, the number of retained predicted pockets is the number of small molecules present
in the deposited PDB system.
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We then used the metrics used by Kalasanty on their dataset: DCC and DVO. The DCC
metric computes the distance in Angstrom between the center of mass of the predicted pocket
and the one of the ground truth. We denote a prediction as successful when its DCC is below a
distance threshold, and we plot the success rate at different thresholds of the different methods.
We compare predictions of InDeep compared to the ones of Kalasanty, for the bound conforma-
tion (holo) as well as the unbound one (apo). The DCC values were computed in 3 conditions:
between the computational predictions and (i) the VolSite cavities, (ii) the ligand positions and
(iii) the ligand positions that have a VolSite cavity associated with them (top of Figure 6.2).
The DVO metric is only computed on successful prediction at 6 Å and consists in the volume of
the overlap over the volume of the union. This procedure is illustrated in Supplementary Figure
E.3 and the DVO results are presented at the top of Supplementary Figure E.4.
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Figure 6.2 – Top: DCC evaluation for InDeep and Kalasanty on the Chen benchmark. We
plot the Success Rate (SR), the fraction of systems for which we have a DCC value below a
threshold, for different thresholds. Bottom: Performance on the test set filtered by TM-score.
The plots are produced following the same procedure as the ones above on this new data set.
The metrics are computed with the VolSite cavities associated with the ligand position given
by the PDB (A.), the ligand position itself (B.) and the ligand position having a cavity detected
by VolSite (C.).

First of all, we reproduce the results claimed by Kalasanty. In this benchmark dataset,
InDeep outperforms Kalasanty on all settings except in the very low DCC range and for VolSite
cavities only. At a 6 Å threshold, we have an average relative performance boost of 27% .
We see that this difference is most important in the ligand setting that resembles our training
procedure, but that the performance remains stable on the cavities setting. We also see that
this boost of performance is observed across holo and apo predictions. We detect approximately
40% of the binding sites in the best ranked predictions. We then compute the DVO values for
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the different methods among the successful predictions at 6 Å. We obtain comparable values of
DVO overall. Because Volsite cavities tend to be deeper into the pocket, Kalasanty predictions
tend to be at the bottom of binding sites. This explains why the average DVO value for cavities
is better for Kalasanty and worse for InDeep (0.612 vs 0.503), and vice-versa for ligands (0.257
vs 0.320). Moreover, one should note that the total populations are not the same because the
DVO is computed only on the ’successful predictions’ with low DCC values. Therefore, the
better performance in terms of DCC can hinder the DVO distribution performance.

Finally, we further tested InDeep on the complete sc-PDB, an annotated database of drug-
gable binding sites from the protein data bank. We computed the DCC values to compare
InDeep predictions with the Volsite cavities stored in the sc-PDB and the position of the ligand.
At 6 Å we found a success rate value of 0.71 and 0.68 for the Volsite cavities and the ligand po-
sitions respectively. The full results are available in Supplementary Figure E.5. Overall, InDeep
yields state of the art performance on the binding site prediction for general ligands, even in the
unfavorable setting of predicting cavities, as opposed to actual ligand localization.

Benchmark of InDeep on iPPI binding sites

We have then repeated the same data extraction pipeline as used for the Chen data set and
described in Supplementary Figure E.3 on our test set. We have applied the same TM-score
filtering between the train set of Kalasanty and our test set to avoid data leakage. This represents
a more suitable application of InDeep, as it was designed to identify PPI specific binding pockets.
We also note that this procedure results in few (81) systems, because of the large overlap with
the training set of Kalasanty. We present the DCC results in Figure 6.2 (bottom) and those for
DVO in Supplementary Figure E.4 (bottom).

Despite the limited size of this filtered data set, we see that InDeep clearly outperforms
Kalasanty. The SR is increased 5-fold and the DVO values remain reasonable. Moreover, we
retain 80% of the performance when predicting on the apo form of the protein, an important
feature for these binding sites that are known to be hard to detect. This shows that InDeep is
not only a good predictor for conventional target binding sites, but that it is much more efficient
than existing methods for iPPI binding site detection.

6.3.2 Predicting and profiling epitope binding sites.

Benchmark of InDeep on PPI data sets

As for PL, several tools exist that predict which region of a protein interact with another. Once
again, we choose to compare against the state of the art and reproduce the results of PInet [Dai
and Bailey-Kellogg, 2021]. We use two benchmarking data sets they propose: DBD5 [Guest
et al., 2021] and EpiPred [Krawczyk et al., 2014]. DBD5 is a protein docking benchmark that
offers several pairs of structures of interacting proteins. This dataset is split into a train and
test set by PInet. EpiPred is a dataset centered around interactions between antigens and
antibodies. For fairness, we used their protocol to annotate the data as in PInet and have rerun
their method. Finally, we have used their tool in the partner-specific setting (giving the partner
as input) and in a blind setting that is closer to our use case.

We then had to slightly adapt our validation pipeline. Indeed, we have found no study trying
to predict the actual location of the partner in the vicinity of the protein surface. The tools
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we compare against always project the predicted interactability onto the surface residues of the
protein or the sequence. To project our 3D prediction onto the sequence, we use a convolution
with a Gaussian kernel between our 3D prediction and the coordinates of the atoms of the
protein.

We compute the Area under the Precision-Recall curve for the DBD5 test set and EpiPred.
On the DBD5 test set, InDeep is widely outperformed by PInet. However, PInet was trained on
a different split of the same data set, so we turned to EpiPred, which was not used for training
either methods. PInet gets a value of 0.235 and 0.217 in the native and blind setting, respectively.
On this data set, we get a value of 0.232, close to the performance of the partner-specific setting.
We achieve a state of the art performance in our blind setting. Moreover, it should be noted
that InDeep performance suffers from the extra step of sequence projection. Overall, this shows
that our tool is able to accurately predict the interaction sites of a protein.

Localization of interacting partner

We complement this comparison to other tools with a validation of InDeep with metrics closer to
the PL validation. We compute these metrics on our test set as well as on DBD5 and EpiPred. We
note that to our knowledge, no tool exists that outputs 3D prediction of the volume occupied by
a putative protein partner. However, this prediction is of great use to assess if the 3D prediction
for a small molecule binding would collide into its corresponding protein partner, opening new
doors for therapeutic design of iPPIs. Since for PPIs, the number of observed partners is just
one, we have computed DCC and DVO values for one, three and all predicted binding sites.
Because the interfaces are bigger, we also present our results up to a distance threshold of 10A.
The results are presented on Figure 6.3.
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Figure 6.3 – DCC values for InDeep on the test set (Left), DBD5 (Center) and EpiPred (Right)
data sets, when considering the best, top-3 or all pockets predicted.

At the 10 Å threshold, we have success rates of 42%, 24% and 11% with only the first
prediction, and of 78%, 72% and 69% using all of them for our test set, DBD5 and EpiPred
respectively. This means that our method finds the correct binding site in about 70% of the
cases, but that a significant amount of times, the correct predicted volume is not ranked as
the first one. This can be partially imputed to the fact that a given protein can have several
partners, so the first prediction might actually be a correct one that does not correspond to the
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partner at hand. However, InDeep’s performance on the top-3 falls in between the performance
of the top-1 and keeping all pockets, which indicates that the correct binding sites is often among
the best scored positions, proving once again the relevance of the tool for epitope binding site
prediction.

Epitope binding site prediction: atom-typed channel validation

We now turn to the channel evaluation. We have used five channels to encode our protein
environment and our prediction: α-carbon (’CA’), donor and receptor of h-bonds (’HAD’),
positively and negatively charged atoms (’POS’ and ’NEG’) and hydrophobic/aromatic atoms
(’COB’).

This means that beyond prediction of the presence or absence of a protein partner, the
model also predicts which protein atom type should be at a given voxel. This is close to the idea
developed by LigVoxel [Skalic et al., 2019c] but for the interactability model. However, finding a
quantitative metric to describe the quality of these channels is not easy. Indeed, the target now
contains several little volumes (each atom type environment) that can be split across the protein
partner interface. Therefore, we can not use the DCC metric easily, because the centers of mass
of split volumes do not represent our objects accurately. Moreover, we cannot easily interpret
the DVO values, as previous experiments only plotted the DVO for successful DCCs, which we
do not have anymore. This is even more true if we consider the large size of the interface, which
explains why we cannot use the same validation procedure as LigVoxel.

We have turned to a more direct method for assessing the performance. At each voxel of
our prediction, we have a distribution of probability for each channel. We can aggregate these
voxel distributions for all voxels around an atom of the ligand to obtain a mean distribution
of channel probabilities. We also compute an atom-type specific distribution by aggregating
only the voxels around atoms of each specific channel. We plot a heatmap representing the
Z-scores of the observed channels distributions compared to the overall ones. We expect to see
enhanced values on the diagonal and decreased ones off the diagonal. The results are presented
in Supplementary Figure E.6.

We see that the hydrophobic channel (COB) performs well at localizing hydrophobic patches
of protein partners (Z-Score = 1.6). It is an important result as transient protein-protein in-
teractions, that represents most of the known PPI targets, are often mediated by hydrophobic
patches at the interface whose seclusion from the solvent upon binding helps to regulate protein
association. This COB channel can therefore be used as a way to suggest point mutations at
the interface when dealing with hydrophobic interaction, or in the context of epitope mimicking
or peptide design. The backbone channel (CA) has a more modest performance than COB, al-
though it displays a partial enrichment. In this case, the perspective of depicting the backbone
of a putative partner for a given interactability patch is also very pertinent. Indeed, for example
the spatial arrangements of Cα within a α-helix are fitting very nicely within a cylinder that can
be clearly identified within some PPIs mediated by such secondary structure at the interface
(see case study about Bcl-2). Nevertheless, the other channels are clearly non-specific and shall
be the subject of improvements in the future.
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Figure 6.4 – Left: InDeep interactability patch prediction on Bcl-2 (pdb 2xa0). Right: Ligand-
ability prediction (red surface) performed on Bcl-2 (pdb 4lvt) surface. The red surface patches
of InDeep ligandability are localized around the known hot spots of the Bcl-2/Bax interaction
that are mimicked by some of the ligand atoms.

6.3.3 Case study: Bcl-2 as therapeutic target

The B-cell lymphoma-2 (Bcl-2) protein is the eponymous protein of the Bcl-2 family, which
is central to the regulation of apoptosis and vital for proper tissue development and cellular
homeostasis [Bajwa et al., 2012]. Upon interaction with pro-apoptotic BH3 domains containing
proteins, Bcl-2 inhibits cell death. In the last two decades, small molecules that disrupt this
interaction by binding to Bcl-2 and other anti-apoptotic proteins of this family, have been
successfully designed and clinically approved to induce apoptosis of cancer cells [Vogler et al.,
2009]. Pro-apoptotic partners of Bcl-2 possess a 20 Å-long α-helical-containing BH3 domain that
interact at Bcl-2 surface through an extended hydrophobic groove. A recent review underpinned
that the successful development of drugs, such as Venetoclax, against this target was mainly due
to the fact they manage to mimic two of the hotspot residues within the BH3 domain binding
this groove [Ashkenazi et al., 2017].

This protein family is therefore an excellent case study to retrospectively evaluate the perti-
nence of using a tool like InDeep. The fact that this tool can predict ligandable/druggable bind-
ing pockets, interactability patches including hydrophobic and backbone atom-typed channels,
and also monitor such predictions along molecular dynamics trajectories allows a retrospective
analysis of feasibility of designing ligands binding to the BH3 groove of Bcl-2. Although Bcl-2
complexes were present in our training set, it is worth noting that the different InDeep predic-
tions below have been made exclusively on the sole structure of Bcl-2 without any consideration
for Bax or known co-crystallized ligands.

We can first use InDeep to predict interactability patches at the surface of Bcl-2. As can
be seen on Figure 6.4 (Left panel), InDeep correctly predicts (1st ranked patch), within the
BH3 groove, the location of the interactability patch with the α-helix of its protein partner
Bax. Inspecting more specifically the Cα- and hydrophobic-atom-typed channels within the
interactability patch Supplementary Figure E.7 (Top panel), one can observe respectively 1)
a faithful depiction of the α-helix shape of the Bax epitope binding the BH3 groove (as a
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Figure 6.5 – InDeep predictions (red and orange) along molecular dynamics trajectory of Bcl-2.
Moving averages (exponential) on 200 frames are represented with solid lines. Left: InDeep

ligandability score evolution (red) compared to the minimal binding site RMSD (blue) with
respect to 16 PL structures. Right: InDeep interactability score evolution (orange) compared
to the RMSD (blue) with respect to the reference HD structure. Local minima on the RMSD
curve and their corresponding InDeep predictions are highlighted as black points.

cylinder shape), and 2) a proper localization of the hydrophobic hotspots known for this system
[Ashkenazi et al., 2017].

If we now use the ligandability prediction of InDeep on the same structure of Bcl-2 as co-
crystallized with Bax (pdb: 2xa0), one can see on Supplementary Figure E.7 (Bottom panel)
that InDeep correctly highlights the known aforementioned hotspots as the most ligandable
regions of the BH3 groove of Bcl-2. In the end, one can notice on Figure 6.4 (Right panel) that
the same regions that were successfully targeted by Venetoclax analogs (ex with pdb: 4lvt) and
correctly highlighted by InDeep.

NMR and X-ray crystallography have highlighted important backbone rearrangements within
Bcl-2 upon peptide and small molecule binding to the BH3 groove [Liu et al., 2003]. Early
virtual screening approaches failed to identify validated small molecules inhibitors, as they did
not consider protein flexibility [Scott et al., 2016]. It is therefore essential to properly sample
the flexibility of the system and be able to monitor both ligandable and interactability patches
on representative Bcl-2 structure conformations. To do so, a 1 µs-long molecular dynamics
simulation (see MD parameters in Supplemental section E.5), starting from the apo form of
Bcl-2 (pdb 1gjh), was run to monitor the ligandability and the interactability of the BH3 groove
known to bind Venetoclax and other chemical analogs. The InDeep prediction has been focused
on this region of Bcl-2, as the goal of this approach is to detect holo-like conformations i.e.
favorable conformations for ligand binding and not to detect the binding region on the whole
protein surface. Figure 6.5 (Left panel) shows the values of the InDeep ligandability score
of each frame (red line) and the minimal binding site RMSD value (blue line) with respect
to 16 ligand-bound PL structures (see binding site definition and the list of PL structures in
Supplemental section E.6). It can be noted from the fluctuation profiles of the RMSD and the
ligandabilty scores that local minima in the RMSD value (highlighted as black points) correspond
to ligandability peaks. Therefore, holo-like conformations (with low RMSD against a PL) tend to
be correctly predicted as ligandable by InDeep. A similar trend was observed by other groups on
conventional targets [Kozlovskii and Popov, 2020]. Likewise, the interactability was monitored
along the same simulation and the RMSD of the binding site residues was computed against a
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holo HD structure of Bcl-2 bound to Bax (pdb 2xa0) Figure 6.5 (Right panel). Similarly to the
ligandability model, holo-like conformations have a higher score of InDeep interactability than
conformations distant from the HD conformations.

These predictions collectively show that a proper usage of InDeep early in the drug discovery
initiative against Bcl-2/Bax would have highlighted the hydrophobic hotspots residues within
the BH3 groove of Bcl-2 and the most ligandable binding regions of these spots to assist the
design of selective BH3 mimetics. Moreover, InDeep would have been efficient at profiling holo-
like conformations prior to virtual screening campaigns even when starting from apo structures,
and in the absence of Bax bound to Bcl-2, within a molecular dynamics trajectory. Finally, as
holo-like conformations are not always accessible with regular water-solvated MD simulations
[Eyrisch and Helms, 2009], InDeep can be easily combined to other sampling protocols in order
to profile the resulting pocket conformations.

6.4 Discussion

We have introduced InDeep, a unified prediction tool for structure-based drug design targeting
protein interfaces. We show that this tool is competitive in detecting the residues that interact
with a protein partner. We go beyond this sequence prediction by predicting the localization in
space of a putative partner using atom-typed channels signal that helps understand how such
protein interaction can take place. 70% of the observed binding sites are present in one of our
predictions and 35% in the top three ones. Moreover, InDeep clearly outperforms the state of
the art of binding pockets detection for iPPI binding sites but even for conventional targets.
Combining those two predictions for a newly solved structure, one can investigate binding sites
for ligands that would potentially disrupt a given PPI. Given such a detected binding site,
our tool also enables tracking ligandability or interactability scores along a molecular dynamics
trajectory, which opens the door for a refined ligandability assessment as well as conformation
selection for virtual screening, or unravel epitope binding-prone conformations. Finally, we
illustrate these functionalities in a retrospective drug discovery use case on Bcl-2. InDeep is
integrated in a PyMol [DeLano et al., 2002] plugin for easy visualization of the predictions (see
Section E.7).

Despite several promising results, the therapeutic use of iPPIs remains a minority. We hope
this dedicated tool can help enhance their use as well as spark a development of other methods
following this line of work. InDeep uses 3D-FC U-Net because the grid-like prediction enables
actual localization and profiling of protein partners or future drugs. However, this method, as
many others, is sensitive to rotation, a possible extension would be to use equivariant networks
[Weiler et al., 2018a] to bake the rotation invariance in the network.

Future developments also include actual drug discovery project use of the tool as well as the
implementation of a web-server for easier access to the predictions.
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quicksom: Self-Organizing Maps on GPUs
for Clustering of Molecular Dynamics Tra-
jectories

This chapter was made in collaboration with Michael Nilges and Guillaume Bouvier and was
published in Bioinformatics Application Notes in 2021 [Mallet et al., 2021].
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Abstract

We implement the Self-Organizing Maps (SOMs) algorithm running efficiently on GPUs,
and also provide several clustering methods of the resulting maps. We provide scripts and a
use case to cluster macro-molecular conformations generated by molecular dynamics (MD)
simulations.
Availability and Implementation: The method is available on GitHub and distributed as a
pip package.

Résumé

Nous implémentons l’algorithme des cartes auto-organisatrices avec un support GPUs,
et proposons plusieurs méthodes de clustering sur les cartes obtenues. Nous fournissons éga-
lement des scripts et des exemples pour regrouper des conformations de macro-molécules
générées par dynamique moléculaire.
Disponibilité : La méthode est disponible sur GitHub et en tant que package pip.
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7.1. INTRODUCTION

7.1 Introduction

We proposed in a former paper [Bouvier et al., 2015] a Self-Organizing Map (SOM) based
algorithm to cluster macro-molecular conformations generated by molecular dynamics (MD)
simulations. Alternative methods exist but they either rely on pairwise distance computation
[González-Alemán et al., 2019] or on including additional prior information [Olsson and Noé,
2019] whereas SOMs are simple linear clustering algorithms. Due to the expansion of the usage of
graphics processing units (GPUs) to perform MD, the number of conformations from trajectories
that need to be analyzed exploded. Therefore, our previous, CPU based, implementation of the
SOM reached its limit. In the current paper, we propose a fast and efficient GPU implementation
of SOM, quicksom. This is highly useful for the analysis of long MD trajectories, but can also
be used for the clustering of other massive and high dimensional data.

Additionally, we added a set of clustering tools that can be used on the maps produced by
the methods. These tools serve to further summarize the inputs. They rely on either automatic
clustering or a manual tool with a graphical interface. The efficiency of our tool is demonstrated
through a case study on a long MD trajectory.

7.2 Efficient Self Organizing Maps on GPU

Our implementation of Self-Organizing Maps (SOMs)[Kohonen, 1982] is based on PyTorch
[Paszke et al., 2019]. This alone speeds up operations and in addition allows us to use GPUs to
make the computations even faster. We timed our method against the former application note
[Bouvier et al., 2015] and SOMPY[Moosavi et al., 2014], the main implementation of SOMs in
Python that is a parallel CPU-based tool.

We used our method on some 2-dimensional toy data as well as on a molecular dynamics
trajectory resulting in 168-dimensional vectors. We show the time necessary to perform the
training loop on 100k of these vectors in Table 7.1. We include a run on CPU for comparison
as well as a run on several cores for SOMPY.

Method Toy Data MD Trajectory

Old method [Bouvier et al., 2015] 87 s 536 s
SOMPY [Moosavi et al., 2014] 5.9 s 6.9 s
SOMPY (20 cores) 0.85 s 12.4 s
quicksom (CPU) 13 s 101 s
quicksom 1.6 s 3.3 s

Table 7.1 – Mean time necessary to process 100k points in the training loop

As expected, the new method is much faster than the old one, especially when run on the
GPU, with a 160-fold speedup. We have comparable run times to the SOMPY implementation
for the synthetic data set, and two-fold speedup on the higher dimensional MD data. This was
unexpectedly fast for this CPU-based method. However, the SOMPY implementation does not
support custom batch sizes, so the whole dataset is passed at once, which does not allow flexible
training and biases the training for large data sets. We believe this to be a major limitation
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because tuning the optimization for large data sets was revealed to be key, in particular for the
analysis of MD trajectories.

7.3 Clustering

We introduce several tools to cluster our data beyond a simple SOM cell affectation. The idea
is to merge neighboring cells that represent several centroids inside the same cluster.

7.3.1 Automated Approaches

The SOM yields a lattice graph whose nodes are the centroids and whose connectivity is given
by the SOM grid. Edges are weighted by the euclidean distance of the centroids they connect.
We then compute the matrix of graph distances of nodes. To detect nodes that belong to a
given community and to cluster these nodes, we compute the topological distance matrix, and
we can thus use algorithms such as the Agglomerative Clustering algorithm. The U-matrix is an
informative 2D representation of the SOM that can depict efficiently its topology. A U-Matrix
is defined as the matrix whose value at each grid point is the mean of the weight of its edges. To
deal with toric connectivity, we rearrange the map by flattening it following the graph shortest
path from the global minimum, and pad it to get a square matrix. Using this formalism, we can
turn our SOM into an image and use any segmentation algorithm to group centroids together.
We default to the graph approach but implement other algorithms that the user can choose.

7.3.2 Manual Approaches

These automatic methods are always prone to failure because of the variety of possible maps
resulting from the variety of possible data at hand as well as the choice of hyperparameters
for the maps. Therefore we also include a manual clustering option with a GUI, available as a
command-line tool. The user can click on a point on the map and expand a region around it by
hand, to select the relevant zones of the map they produced. We believe that this user-defined
and application-specific clustering is a good work-around in case automatic clustering fails.

7.4 Molecular Dynamics Clustering

The tool can be applied to efficiently cluster Molecular Dynamics (MD) trajectories. This is
useful to create a library of representative structures. To do so, we represent each frame by the
concatenation of each atom’s coordinates and train a SOM to cluster these frames. We included
a script to take a MD trajectory in the CHARMM [Brooks et al., 2009] dcd format as input and
output a npy file that can be handled by our SOM implementation. This script also allows the
user to select a set of atoms of interest for the SOM analysis. We also included utilities to select
the frames that fall into a given cluster for visualization.

The method was applied on the trajectory analyzed in our previous implementation [Bouvier
et al., 2015]: 15 µs molecular dynamics at 330 K of a simplified sequence of a 56-residue α/β
subdomain of the protein G [Guarnera et al., 2009] starting from an extended conformation. The
analysis was performed on the C-α coordinates yielding 750 000 vectors of dimension 168. We
include the results in Figure 7.1. We can see that the unfolded protein conformations correspond
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Figure 7.1 – Resulting U-Matrix of the clustering of a MD trajectory. The range of values
is normalized. Darker color implies closer cells that represent a data cluster. White arrows
represent the flow defined as the sum of the transition steps of the MD from each cell. Some
structures were represented with a pointer to the cell they are mapped to by the algorithm.

to a sparse region of the map while the most stable scaffolds fall into dense ones. We also included
a representation of the transition steps as a flow map. This flow goes from the least populated
and stable states to the more stable ones. It also enables visualization of the paths preferentially
followed by the trajectory.

Implementation and availability

We have packaged our project into a pip package, quicksom, for easy setup and command line
usage. The source code is available at https://github.com/bougui505/quicksom. A full de-
scription for installation and usage is available as a README.
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Chapter 8

OptiMol : Optimization of binding affini-
ties in chemical space for drug discovery

This chapter was made in collaboration with Jacques Boitreaud, Carlos Oliver and Jerome
Waldispuhl and was published in the Journal of Chemical Information and Modelling in 2020
[Boitreaud et al., 2020].
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Abstract

Ligand-based drug design has recently benefited from the development of deep generative
models. These models enable extensive explorations of the chemical space, and provide a
platform for molecular optimization. However, the vast majority of current methods do not
leverage the structure of the binding target, which potentiates the binding of small molecules
and plays a key role in the interaction.

We propose an optimization pipeline that leverages complementary structure-based and
ligand-based methods. Instead of performing docking on a fixed chemical library, we itera-
tively select promising compounds in the full chemical space using a ligand-centered gener-
ative model. Molecular docking is then used as an oracle to guide compound optimization.
This allows to iteratively generate compounds that fit the target structure better and better,
without prior knowledge about bio-actives.

For this purpose, we introduce a new graph to selfies Variational Autoencoder (VAE)
which benefits from an 18-fold faster decoding than the graph to graph state-of-the-art, while
achieving similar performance. We then successfully optimize the generation of molecules to-
wards high docking scores, enabling a ten-fold enrichment of high-scoring compounds found
with a fixed computational cost.
Code is available at : csb.cs.mcgill.ca/optimol

Résumé

La découverte médicamenteuse centrée sur les ligands a bénéficié récemment de l’in-
troduction de méthodes génératives par apprentissage profond. Ces modèles permettent une
exploration accrue de l’espace chimique et le recours à des méthodes d’optimisation continue.
Cependant, la plupart de ces méthodes n’exploitent pas la structure de leur cible thérapeu-
tique, qui est pourtant centrale dans l’interaction cible-ligand.

Nous proposons un pipeline d’optimisation qui utilise à la fois les approches centrées sur
les ligands et sur les cibles. Plutôt que de faire du docking sur une chimiothèque fixée, nous
proposons itérativement des candidats issus de l’ensemble de l’espace chimique à l’aide un
modèle génératif. A chacune de ces itérations, nous utilisons le docking moléculaire pour
guider cette génération. Nous pouvons ainsi générer des populations de composés chimiques
avec des scores de docking croissants au cours du processus, sans connaissances préalables
sur d’éventuelles affinités chimiques.

Nous introduisons un modèle génératif muni d’un décodeur 18 fois plus rapide que l’état
de l’art, tout en maintenant des performances équivalentes. Nous démontrons aussi que le pro-
cessus itératif d’optimisation est efficace pour générer des molécules à bon score de docking,
avec des populations enrichies dix fois en composés à haut score pour un coût computationnel
fixé.

Le code est disponible à l’adresse : csb.cs.mcgill.ca/optimol
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8.1 Introduction

8.1.1 Molecular optimization

Molecular optimization, also known as inverse design, consists in designing compounds with
desired drug-like properties and biological activity. Direct molecular optimization was first in-
troduced in Gómez-Bombarelli et al. [2018]. Subsequently, a string of papers addressed this
problem with a variety of approaches as explained in reviews [Sanchez-Lengeling and Aspuru-
Guzik, 2018; Schwalbe-Koda and Gómez-Bombarelli, 2019]. Formally, we are looking for com-
pounds x that maximize a function f(x). This function is often a chemical property that makes
a compound more drug-like such as QED or solubility, or a more complex property, such as
bio-activity. Several properties of f affect its optimization: differentiability, dimension of the
output space , evaluation cost and smoothness.

The drug-like chemical space contains an estimated ∼ 1060 compounds [Bohacek et al.,
1996]. The size of the chemical space and the difficulty to accurately estimate the objective
f without in-vitro tests make it impractical to look for a single candidate. Moreover, f is
often a simple surrogate for a complex, phenotypical endpoint. Hence the current approach
to molecular optimization is to search for ensembles of compounds with enhanced estimated
properties and then conduct in-vitro tests. Formally, we are looking for a non-trivial distribution
q that augments Ex∼q(f(x)), instead of the global maxima of f . This induces a trade-off between
maximizing the objective function and sampling diverse compounds.

8.1.2 Binding affinity estimation

A drug’s activity is induced by its affinity to a target. There are three avenues for obtaining
binding affinity estimates :

1. Experimental bio-assays consist in in-vitro quantitative assessment of the interaction be-
tween a compound and a target. This data does not require computing and is reliable, but
often scarce.

2. Quantitative Structure Activity Relationship (QSAR) models are machine learning models
trained on experimental bio-assays to derive structure-activity rules. They rely on the
assumption that molecules with similar structure are likely to exhibit similar bio-activity,
which does not hold true in the whole chemical space, especially near activity cliffs [Husby
et al., 2015]. Moreover, as any other machine learning algorithm, they have an applicability
domain. This means that their accuracy for a compound x depends on the similarity
between their training set and x.

3. Molecular docking softwares search for ligand conformations that minimize the binding
energy with a given protein pocket. Although the estimates of the binding affinity they
provide are often noisy, the top-scoring compounds are known to be enriched in active
molecules [Huang et al., 2006]. Thus they are widely used to select the most promising
compounds in a library[Shoichet et al., 2002]. Docking is computationally very intensive
(∼ 10 CPU minutes / compound with Vina[Trott and Olson, 2010] ), making it crucial to
carefully choose the compounds to dock.
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Ligand Based Structure Based

Experimental Affinity Selected Compounds

VAE Training Docking

Generated Compounds Fixed Compound Library

Usual distinct pipelines

Proposed method

Figure 8.1 – Closing the loop : In ligand-based approaches (left), new actives are sampled by
a generative model which is trained to generate compounds based on a fixed dataset with high
experimental affinities. In structure based approaches (right), a fixed library is screened for
actives via docking. We propose to dock the compounds produced by the generative model,
and to use the results of the docking to fine-tune the ligand-based generative model.

8.1.3 Binding affinity optimization

In practice, the earliest molecular optimization task consists in finding compounds with high
affinity to a given target. In the structure-based approach, an ensemble of putative candidates is
obtained by screening fixed chemical libraries using docking. Computational resources currently
limit the library size to ∼ 106 − 109 compounds, which is a very small fraction of the drug-like
chemical space.

In the ligand-based approach, QSAR models are used as a surrogate for binding affinity,
leveraging known actives. Therefore, it is ill-suited to finding compounds with new binding
modes. It also requires the target to have enough known actives.

Active learning and automated synthesis have been identified as promising research directions
to accelerate the drug discovery process [Schneider, 2018; Winter et al., 2019b]. By allowing a
model to iteratively query the most informative data, and learn from experimental answers
to these queries, these methods enable a guided and data-efficient exploration of the activity
landscape in the chemical space. Inspired by such closed-loop strategies, we propose to iteratively
search the chemical space for promising leads, guided by a structure-based assessment of their
activity (Figure 8.1). By combining molecular docking and a latent-variable generative model,
our framework finds regions of high affinity to a target in the chemical space.

8.1.4 Contributions

We introduce a new Variational Autoencoder architecture that retains state-of-the-art results
and enables faster molecule generation. Next, we develop OptiMol, a pipeline to generate
molecules with optimized docking scores, taking into account the computational cost of molecular
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docking. We show OptiMol generates a population with ten times more high-scoring compounds
than uniform sampling on the human Dopamine Receptor D3. Finally, we show OptiMol can
handle the optimization of composite objective functions.

8.2 Related work

8.2.1 Molecule representation

Molecules can be represented in several ways, trading off between the accuracy of the depiction
and its computational advantages. In decreasing order of richness of representation, molecules
are represented as ensembles of 3D, static 3D, molecular graphs, SMILES, Selfies [Krenn et al.,
2019] or fingerprints. Each of these representations has drawbacks. Using 3D objects with
no preferred orientation in machine learning pipelines is under research with promising results
[Hoffmann et al., 2019; Hoffmann and Noé, 2019] but not yet established. Molecular graphs
are efficient to encode information but deconvolution and generation is harder [Assouel et al.,
2018; Jin et al., 2018a]. Finally, string representations were used first as they benefited from
advances in natural language processing. SMILES were extensively used but when generating
SMILES, some sequences are invalid. This problem was recently solved by the introduction
of Selfies[Krenn et al., 2019], which yield all valid sequences, but are sensitive to small mod-
ifications. Another approach to get molecular representations uses Variational Autoencoders
(VAE) [Kingma and Welling, 2013]. These methods learn a continuous encoding of the chemical
space by reconstructing or translating these representations [Gómez-Bombarelli et al., 2018; Jin
et al., 2018a; Krenn et al., 2019; Kuzminykh et al., 2018; Liu et al., 2018; Skalic et al., 2019a;
Winter et al., 2019a]. The latent space can be interpreted as a flattened manifold, of which the
structure and geometry mostly reflects chemical similarity[Winter et al., 2019a]. Turning the
chemical space into a euclidean space enables one to continuously navigate in the space, which
opens the door to classical optimization methods.

8.2.2 Molecular optimization

Latent space optimization Once molecules are embedded in a continuous space, classical op-
timization schemes become possible. Bayesian optimization was used first [Dai et al., 2018;
Gómez-Bombarelli et al., 2018; Jin et al., 2018a; Kusner et al., 2017], followed by constrained
Bayesian optimization [Griffiths and Hernández-Lobato, 2017; Korovina et al., 2019] and swarm
optimization [Winter et al., 2019b]. Another approach is to approximate f with a differentiable
function and to conduct gradient ascent in the latent space. A potential advantage of this
method is that the function mapping from latent space to f can be learned jointly with the
generative model, contributing to shaping the latent space [Liu et al., 2018].

Molecular translation Matching Molecular Pairs Analysis was recently used to train a transla-
tional VAE to turn a molecule into a similar one with better target property [Jin et al., 2018b] :
this model learns to take an optimization step, given a starting point. Damani et al. [2019] show
that molecules can be optimized for a target property by recursively taking such steps in the
chemical space. This step-wise approach is limited to lead optimization, but seems well suited
to handle activity cliffs.
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Guided generation using Reinforcement Learning By decomposing the molecule generation as
a sequence of actions, we can build a generative model using a probabilistic RL agent. Guided
generation consists in biasing the generation towards compounds that optimize f , easily including
non differentiable objectives [Olivecrona et al., 2017; Popova et al., 2018]. An adversarial term
can be added to ensure that we keep generating realistic compounds [Guimaraes et al., 2017; You
et al., 2018]. One caveat in using such methods is that for multidimensional objective functions,
rewards become sparse making the training harder [You et al., 2018]. Another issue is that the
number of evaluations of f is not optimized, limiting the use of costly oracles.

Other generative models Jin et al. [2020b] use a fragment based approach where they auto-
matically learn a library of activity-inducing fragments and then generate compounds combining
them. Prykhodko et al. [2019] train a Generative Adversarial Network (GAN) to mimic the ac-
tive compounds distribution in the latent space. A related approach was proposed in Gupta
and Zou [2019], and performs iterative fine-tuning of a generative model on its most success-
ful outputs. Other approaches of this kind with better statistical grounding exist [Brookes and
Listgarten, 2018; Brookes et al., 2019], but we are unaware of their application to small molecule
optimization. They are applicable both to models with and without a latent space structure.
Finally, Skalic et al. [2019a] condition a generative model by a 3D shape. By coupling it with
a GAN that generates shapes conditioned on a target protein structure, they generate ligands
that fit an input protein structure[Skalic et al., 2019b]. This is a way to generate compounds
with augmented affinities that side-steps the direct optimization.

8.2.3 Binding affinity optimization

To generate compounds with high binding affinities, we can also use one of the three aforemen-
tioned sources of binding affinity estimates. In Prykhodko et al. [2019], authors train a GAN
to sample from a distribution resembling the one of known actives in latent space, and evaluate
the samples’ affinities using a QSAR model. Alternatively, a QSAR model can be used to bias
the generation. This is the approach used in the RL framework [Olivecrona et al., 2017; Popova
et al., 2018]. This method gives good results, but is based on a QSAR model that can be inac-
curate: the authors constrain the model to avoid drifting away from its validity region. Finally,
one can resort to a docking program that uses physics-based molecular mechanics force fields
to compute binding affinities. However the computational cost of molecular docking makes the
optimization challenging.

8.3 Methods

8.3.1 Graph to Selfies Variational Autoencoder

We propose a translational graph to Selfies VAE that achieves comparable performance to state
of the art models, while benefiting from the following design choices :

• Using the molecular graph as input and a graph convolution encoder solves the issue of data
augmentation. It is also better suited for learning a chemically organized latent space, since
chemically similar molecules have very similar graphs, while their SMILES representations
may change more due to syntax rules. Finally, graph convolution embeddings and circular
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fingerprints were shown to enhance molecular property predictions [Duvenaud et al., 2015;
Yang et al., 2019].

• Decoding to a molecular graph results in more complex architectures than decoding to se-
quences, thereby increasing the computation time. The main weakness of string-based
decoders is that due to the SMILES syntax, decoded sequences can result in invalid
molecules. By using recently published Selfies [Krenn et al., 2019], we circumvent this
issue and generate 100% valid molecules.

Model architecture details as well as a mathematical framing of VAE are available in Supple-
mentary Section F.1. The data sets used for training are detailed in the Results Section. The
training regime and hyper-parameters chosen for the architecture and optimization procedure
are detailed in Supplementary Section F.2.

8.3.2 Docking on Dopamine Receptor D3

We use AutoDock MGLtools to prepare the ligand and the pockets and Autodock Vina [Trott
and Olson, 2010] to estimate compounds binding affinities to human Dopamine Receptor D3.
We use the PDB structure of the DRD3 receptor provided in the DUD-E[Mysinger et al., 2012]
data set, and keep the same binding site coordinates. We compute the docking score as the
average of the ten best poses found for each ligand as it has lower variance and we found it to
yield the best enrichments.

8.3.3 Query efficient optimization

We turn to binding affinity optimization using this generative model and include docking scores in
the function f , making it non differentiable. In addition, this oracle is now costly and the sparse
rewards induced by the RL frameworks are not tractable, which calls for specific optimization
methods.

Bayesian Optimization

Bayesian Optimization uses Gaussian processes to approximate f in a query-efficient way, by
learning on queries that maximize expected improvement. To sample these points, a rigid (not
learnt nor adaptive) sampling is used. This does not scale well to high dimensional spaces or
large batch sizes as the grid evaluation becomes intractable (this amounts to finding an estimate
on all molecules and only picking the most promising candidates for docking). This choice limits
scalability when sampling tens of thousands of compounds in the chemical space.

Conditioning by Adaptive Sampling

Conditioning by Adaptive Sampling (CbAS) is a recently published alternative method. This
method trains a generative model that seeks to maximize an objective function. Starting from
a prior generative model, it progressively shifts its distribution to maximize the expectation of
a function of the samples. We efficiently use queries thanks to an importance sampling scheme
coupled with reachable objectives for the model. The alternating phases of tuning and sampling
also enable a computationally efficient implementation. In DbAS[Brookes and Listgarten, 2018],
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the model obtained at each iteration plays the role of the prior model, resulting in zeroed
importance weights. This technique can drift away from the prior. We have used a hybrid
technique that clamps the importance weights, still putting more emphasis on the samples
which are likely under the prior but learning on other ones too. For a more detailed explanation
of these algorithms, see Supplemental Section F.4.

8.3.4 OptiMol

OptiMol combines the graph to Selfies VAE, a docking program and the clamped version of
CbAS. First, our prior is trained on a molecular data set and mimics its distribution. Then we
iteratively take samples, re-weight them with docking and fine-tune the model (Figure 8.2).
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Figure 8.2 – OptiMol workflow: A prior generative model is trained on a broad chemical space
and generates samples. We use docking to score these samples, and fine-tune the generative
model on the samples weighted by their docking scores

To our knowledge, this is the first use of CbAS with a computationally costly oracle. Cou-
pling CbAS with docking requires a dedicated implementation. We have implemented a parallel
version of the code that can leverage multi-node architecture computational clusters, using sev-
eral hundreds of CPU cores for the docking phases, and running the sampling and training phases
on GPU nodes. Using this implementation, we trained OptiMol for 30 iterations over batches
of 1000 samples in approximately 15 hours using 200 cores. We note that parallelism over more
CPUs would result in linear speed up, up to several thousands of CPUs. The implementation is
available at http://csb.cs.mcgill.ca/optimol. Given a dataset, users can easily train a new
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prior model. OptiMol can also easily be trained on any target structure, given its PDB file.

8.4 Results

8.4.1 Graph to Selfies VAE

To compare to other architectures, we trained on the Moses[Polykovskiy et al., 2018] benchmark
set, which contains ∼ 1.5M clean leads from the ZINC database [Sterling and Irwin, 2015].
Moses is a standard benchmark for molecular generative models. We achieve comparable results
on the Moses benchmark metrics (Table 8.1, see Supplementary Table F.1 for full comparison).
Our model reaches state of the art performances while benefiting from design choices in our
application. We note that our model has 3.2M trainable parameters, compared to 5.1M for the
default JTVAE implementation [Jin et al., 2018a]. Our model also runs approximately 18 times
faster for sampling and training.

Model Valid Unique 10k IntDiv IntDiv2 Filters Novelty Sampling time

JTVAE 1.0 0.9992 0.8512 0.8453 0.9778 0.9153 153 ms
graph2selfies 1.0 0.9998 0.8560 0.8496 0.9557 0.9097 8.3 ms

Table 8.1 – Left : Moses metrics for samples generated by JTVAE and graph2selfies. Right :
Sampling time is the average time needed to produce one molecule from a trained model.

To test whether our latent space is suitable for optimization tasks, we run Bayesian Optimiza-
tion on the toy task of enhancing the composite logP score1, as it is the standard benchmark. We
compare to latent spaces introduced in previous works [Dai et al., 2018; Jin et al., 2018a; Kusner
et al., 2017]. As all baselines, we train a prior generative model on the 250k compounds dataset,
we use the open-source BO implementation by Kusner et al. [2017] and report our results on
Table 8.3. We note that picking only the 3 best compounds was subject to high variance across
runs because of the size of the chemical space. We got compounds with comparable scores to the
ones found by the state of the art. We conclude that our architecture has a similar performance
as the current state of the art with a significantly reduced computational load.

8.4.2 Docking on Human Dopamine Receptor 3

To evaluate the ability of docking to find active compounds for DRD3, we dock 380 actives
and 20 000 decoys from the ExCAPE database [Sun et al., 2017a]. The actives were picked
by clustering the ExCAPE actives by similarity and picking the centroids. Full docking scores
distributions are shown in Supplementary Figure F.3. We sort the list of compounds by docking
score values. The log-ROC curve (Figure 8.3) shows the fraction of actives found at a given
decoys fraction threshold, with a focus on the top-scoring compounds in the ranked list. When
compared to a random permutation of the list, it shows that docking manages to separate actives
and inactives, with significantly more actives in the top of the list.

1clogP (m) = logP (m) − SA(m) − cycle(m) where cycle(m) is 0 if the molecule has no cycle bigger than 6
atoms, otherwise the size difference between the biggest cycle in the molecule and a 6-atoms cycle
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We then compute Enrichment Factors (EF) at different thresholds and present results in Ta-
ble 8.2. We also include the 1% decoys metric, which represents the enrichment factor computed
after retrieving top 1% of the decoys in the ranked list. Among the 1% top-scoring compounds,
we find a ratio of actives 8.168 times higher than in the whole list. In DUDE[Mysinger et al.,
2012], the authors compute such metrics for 102 diverse proteins. It is worth noting that they
obtain an enrichment factor of 4 at 1% decoys (EF1) for DRD3, which is quite low compared
to other targets, as several get an EF1 higher than 40. This suggests that DRD3 is a rather
difficult target for docking softwares.

Figure 8.3 – Log-ROC curves for ExCAPE
database DRD3 actives and decoys (red) and
random sampling (dashed line)

EF Threshold

13.373 0.1%
11.122 0.5%
8.168 1%
7.229 2%
8.919 1% decoys

Table 8.2 – Enrichment Factor (EF) in active
compounds at different thresholds.

This experiment illustrates that our docking oracle is able to enrich a list of samples in
actives. Hence, the top-scoring compounds found by docking are significantly more likely to
bind DRD3. As a control for lead generation experiments, we also dock 10k ZINC compounds
[Sterling and Irwin, 2015]. As expected, their docking scores distribution is significantly shifted
from the actives distribution, and only a negligible fraction of them have a score better than -10
kcal.mol−1 (Supplementary Figure F.3).

8.4.3 OptiMol training and benchmarking

Optimization of clogP

We benchmark OptiMol on the toy task of generating compounds with high clogP scores. We
use the prior generative model of the 250k dataset and run 20 iterations of CbAS, coupled with
a clogP oracle. We plot the clogP distribution of the 1000 training samples at each iteration in
Figure 8.4, and compare it to a 20-step run of Bayesian optimization, with 500 new samples per
step (Implementation details in Supplementary Section F.4.1). It is worth noting that Bayesian
optimization hardly scales to 1000 samples per step as it does not have a generative model. We
also compare to a reinforcement learning [You et al., 2018] approach that does not use a latent
space to the benchmark, even though it is not query-efficient and thus not adapted to our end
goal of optimizing docking scores.
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Figure 8.4 shows OptiMol gets a much stronger and steadier shift of the distribution towards
high clogP than BO. Under the top-3 compounds metric used in previous works, We obtain
scores (normalized, as in Table 8.3) of 11.52, 11.28 and 11.09 respectively, outperforming the
Reinforcement learning approach by You et al. [2018]. Top-scoring compounds are shown in
Supplementary Figure F.4.

Model 1st 2nd 3rd

GVAE [Kusner et al., 2017] 2.94 2.89 2.8
SD-VAE [Dai et al., 2018] 4.04 3.5 2.96
G2S - BO 4.81 4.6 4.27
JTVAE [Jin et al., 2018a] 5.3 4.93 4.49
GCPN [You et al., 2018] 7.98 7.85 7.8
OptiMol 11.52 11.28 11.09

Table 8.3 – Top 3 clogP scores found by each method (All scores are normalized using the 250k
dataset scores, baseline results are copied from previous works).
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Figure 8.4 – Composite logP optimization results : the blue curve plots the mean and standard
deviation of the clogP at each iteration and the red dots show the maximum score.
Left: Bayesian Optimization of clogP with 10k initial samples and 500 new samples per step,
using implementation from Kusner et al. [2017]. Right: CbAS for clogP optimization, with 1k
samples per step.

Visual inspection of the top-scoring compounds found by OptiMol and GCPN [You et al.,
2018] suggests that these methods consistently outperform BO because they are able to shift
away from the prior chemical space, contrary to BO. This is both a strength and a weakness of
OptiMol, as the clogP objective drives the optimization towards regions of the chemical space
that are not desirable in practice. However, since OptiMol is trained step by step, it is possible
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to control this shift from the prior by early-stopping (See Supplementary Figure F.4 for top
compounds at different steps). We believe this flexibility makes our tool well-suited to real-life
cases of goal-directed optimization.

Optimization of docking scores

We now present the main result of our work : we show OptiMol generates a diversity of molecules
with high docking scores.

We train the prior using a drug-like subset of the ZINC database [Sterling and Irwin, 2015],
following the filtering procedure described by Skalic et al. [2019b]: LogP ≤ 5, molecular weight
250-500 Da, removing molecules containing radicals and SMILEs strings of length greater than
60 characters. We train OptiMol and report the distribution of docking scores of samples at
each step, as well as the number of novel samples (never sampled by the generative model in
the previous steps) on Figure 8.5. Step-by-step, the docking score distribution of the samples
shifts towards lower scores (lower is best). However, the number of novel samples in the training
batch starts to decrease after 14 steps, indicating the chemical space of the generative model is
shrinking. This is not desirable in lead generation, since we aim at learning a generative model
with sufficient ability to explore, even though focusing more on a promising region could lead to
a better distribution of docking scores. For this reason, we use the last generative model with
non redundant samples.
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Figure 8.5 – OptiMol training results on DRD3 (blue) and WEE1 (coral). Left : The average
and standard deviation of the docking scores obtained at each iteration. Right : The number
of compounds never sampled before at each iteration.

Skalic et al. [2019b] also try to generate actives using a target structure. They use a generative
model and condition it using the shape of the target. This does not require additional training
for a query target structure. This is not possible with OptiMol, as a generative model has to
be retrained with a new docking oracle that docks samples on the new target. On the other
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hand, OptiMol oracle and optimization is user-defined, whereas their model is not flexible. We
acknowledge that docking optimization is not the direct goal of Skalic et al. [2019b], but to the
best of our knowledge, it is the only other approach that learns a distribution of compounds
with enhanced docking scores.

We assess OptiMol samples under QSAR and docking metrics, following the evaluation proce-
dure of Skalic et al. [2019b]. We use their web server implementation to generate 4k compounds
for our target, and generate 4k compounds using OptiMol. As a decoy population, we uniformly
sample 10k random samples from the ZINC training set. We then train a QSAR model as
in Skalic et al. [2019b] (Supplementary Section F.5.2) on Dopamine Receptor 3. We rank the
aforementioned samples by QSAR scores, and plot the composition of the ranked list by deciles
(Supplementary Figure F.5). We find that the top half of the list is significantly enriched in
samples from OptiMol, however the first decile still contains more samples from Skalic et al.
[2019b]. Our results could be boosted by finetuning the docking procedure so that it better
correlates with the experimental actives. Moreover, the point of using a structure-based method
is to find new hits that may not belong to the validity domain of the QSAR model.
We then compare the docking scores for our samples to those of Skalic et al. [2019b]. The
distributions of docking scores for OptiMol samples, Skalic et al. [2019b] samples and random
samples from the ZINC training set are shown in Figure 8.6. We find that the scores distribution
of Skalic et al. [2019b] is not significantly shifted from the ZINC prior. OptiMol outperforms
Skalic et al. [2019b] under the ROC-AUC metric they use (ability to distinguish a model sam-
ple from a random ZINC sample) by a large margin (0.47 vs 0.76 for OptiMol). We conclude
that OptiMol successfully generates compounds with enhanced docking scores, and significantly
outperforms related methods at this task.

Diversity and optimization trade-off

Both the results on docking and on clogP highlight the trade-off between optimization and
diversity. Indeed, pushing the optimization too far results in highly optimized compounds but
undesirable behaviors of the generative model. Each user can choose when to stop optimizing.
As a heuristic, we pick the model just before diversity in the samples starts to decrease. All the
following figures and plots will use this heuristic.

8.4.4 OptiMol performance

Sampling from OptiMol model

A challenge in hit finding is to obtain a sufficient diversity of promising compounds. We therefore
assess whether OptiMol samples form a chemical space that is large and diverse enough to be
practically useful. To do so, we generate 100k samples using the previously trained OptiMol

model. The docking scores distributions of the first 2500 and last 2500 samples are similar
(respective means -8.59 and -8.56, p-value = 0.045, F.8), indicating that the quality of samples
does not decrease during sampling. We also assess the diversity of these samples, using the
mean pairwise Tanimoto distance as a diversity metric. This distance is a bit-to-bit distance
over fingerprints, ranging from zero to one. Table 8.4 shows that the samples produced by
OptiMol remain chemically diverse, and, most importantly, that the 10% top-scoring samples
are as diverse as the whole population sampled from OptiMol. Random samples from OptiMol,
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sorted by docking scores, are shown in Supplementary Figure F.9. These molecules span over
multiple scaffolds but some of them include macro-cycles or halogens, undesirable features for
drugs. Finally, as OptiMol shifts away from the prior during training, we study the druglikeness
(QED) and synthetic accessibility (SA) of the learnt chemical subspace. Indeed, both properties
are relevant to the lead generation problem, and synthetic accessibility of compounds proposed
by generative models is an open problem. We find that OptiMol samples have a lower QED
than the ZINC compounds in the prior, but that the SA scores do not shift (Table 8.4).
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Figure 8.6 – Distributions of docking scores on DRD3 for 2k random ZINC compounds, samples
obtained with Skalic et al., OptiMol and OptiMol-multiobjective generative models

Flexibility and robustness

We have designed our tool to be as flexible as possible regarding the target structure and
the objective function used. The user can easily change the docking target, simply by using a
command-line option. OptiMol can also be used with any objective function f . Detailed instruc-
tions about how to plug-in such user-defined scoring functions are given in the documentation.
We assessed the impact of such modifications by running the docking score optimization for an-
other target, WEE1, a nuclear kinase. The results are presented in Figure 8.5. The optimization
results are on par with DRD3, showing the tool’s flexibility and robustness.

118



8.4. RESULTS

We turn to assessing the robustness of OptiMol. We start by monitoring how the results change
when tuning hyperparameters. We find our results to be stable to different architecture choices
detailed in Supplementary Sections F.2 and F.5.3. We explicitly assessed the robustness of the
optimization by doing three independent runs of OptiMol on DRD3. Optimization trajectories
are shown in Supplementary Figure F.6. Despite a limited statistical power, the results indicate
that the convergence of the optimization is stable and robust.

Multi-objective optimization

A key strength of OptiMol is its flexibility regarding the oracle scoring function f , which allows
for multi-objective optimization with minimal changes. To address the aforementioned decrease
in QED, we included it in the objective function, asking the model to only get molecules with a
QED above 0.4 and a SA below 5. These thresholds were found to account for most molecules
in the filtered ZINC prior. The training dynamics over iterations are shown in the Supplemental
Figure F.7 and the results are presented in Table 8.4.

Docking QED SA Diversity
Overall 10% Overall 10% Overall 10% Overall 10%

ZINC -7.78 -9.46 0.74 0.657 2.92 2.73 0.89 0.88

OptiMol -8.78 -10.67 0.62 0.51 2.91 2.98 0.86 0.86
Multiobjective -8.58 -10.42 0.69 0.57 2.84 2.91 0.86 0.85

Table 8.4 – Mean of Docking, QED, SA and Diversity score for samples generated with OptiMol

and the multi-objective OptiMol implementation. The values for the ZINC prior are shown for
comparison. ’Overall’ means the mean was computed over the whole distribution and ’10%’
means it was computed only over the 10% best scoring compounds. The multi-objective model
mitigates the drop in QED values, indicating the model focuses on more lead-like molecules.

We find that the average QED and SA of OptiMol-multiobj samples are closer to the ones
of the prior. On the right side of Supplementary Figure F.9, we plot samples drawn for this
multi-objective model. These samples do not include any macro-cycles and rarely halogens,
mitigating the flaws of the first model. OptiMol-multiobj successfully constrains the samples to
a chemical subspace of acceptable QED without affecting the docking results (Figure 8.6, Table
8.4). This shows OptiMol can handle challenging composite objectives.

Use of OptiMol to boost virtual screening

These results illustrate the potential of our method to speed-up lead discovery without making
compromises on the exploration of the chemical space. Indeed, in our experimental setting
where ZINC is used as the prior chemical space, only 1.08% of the compounds have a docking
score better than -10 kcal/mol (estimated on 10k random samples from our ZINC dataset). By
contrast, at the cost of docking 15k compounds to train OptiMol, we are able to sample from a
distribution where 12.18% of the samples have docking scores better than -10. If we were to dock
100k random molecules from the prior chemical space, we therefore would expect to find 1080
compounds with a score better than -10. Training OptiMol required 15k docking queries, but
the expected number of hits with a score better than -10 if we then dock 85k samples is 10360,
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almost 10 times higher. By finding promising regions in the chemical space, the generative model
learned by OptiMol thus maximizes the efficacy of a virtual screening with fixed computational
cost.

Conclusion

We introduced a new small-molecules generative model using graphs and Selfies and which
achieves state of the art representation with lower computational cost. By combining our efficient
generative model with CbAS, we are able to optimize costly and composite scoring functions.
We generate compounds with improved docking scores, bringing optimization methods closer to
the ultimate goal of biological activity.

OptiMol has applications for ligand-based pipelines by generating compounds with enhanced
activity towards a target. This would allow for target optimization without having to rely
on previously available affinity data, which is often the case with novel targets such as the
ones involved with the recent SARS-CoV-2. Structure-based pipelines can also be improved by
generating focused libraries for docking and saving computations on low affinity compounds, as
is demonstrated by the tenfold increase in the ratio of hits at fixed computational cost. Finally
OptiMol can be seen as a step towards a unified drug discovery pipeline using multiple objectives
such as combining the efficient prediction of putative binders with essential pharmacokinetic
profiling.

Extensions of this work could include investigating the use of different priors with specific
properties or with previous knowledge about actives. Another next step is the application of
the method to the simultaneous optimization of several targets, or the maximization of affinity
to a target while minimizing off-target affinities.
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Conclusion

Drug discovery is still a long and tedious process. Even after identifying a target and finding
its structure, few tools manage to assist the quest for drugs. This is illustrated by the Covid
situation, where the structure of the Spike protein was published just a few weeks after the
pandemic outbreak but no candidate drugs exist yet. To enhance drug design, several questions
about the targets, potential drugs and their interaction need to be answered. Inspired by the
breakthrough of machine learning in other fields and motivated by the rising amount of structural
data available, it is natural to try and answer these questions with machine learning. To do so, we
need to adapt machine learning to structured data, to find the right way to model biomolecules
for machine learning and to apply this approach to assist drug discovery. In this PhD, we make
progress towards this general goal by making steps in all three directions.

In chapter 2, we develop a machine learning method to deal with the structure induced by
the Reverse Complement symmetry and show improved performance. In chapters 3,4 and 5, we
model RNA with 2.5D graphs and use this representation with geometric deep learning. We
show that it again improves performance over existing methods and opens new doors for RNA
biology and drug design. Finally, we develop tools readily usable for drug discovery scientists.
We offer a tool to investigate the druggability of PPI sites in chapter 6, one to efficiently cluster
MD trajectories in chapter 7, and one to generate molecular compounds with high scores of
docking in chapter 8.

Geometric deep learning is useful for structural biology and drug design Machine learning has
been used to assist structural biology and drug design for fifteen years, improving performance
over other approaches in a variety of tasks. Throughout our work, we have consistently found
machine learning to perform very well. This is a positive indicator that our general goal is
reasonable.

Geometric deep learning methods were developed without consideration of biological data.
Moreover, their development follow machine learning in competing for accuracy in artificial
benchmarks such as discriminating bathtubs from airplanes represented as surfaces [Wu et al.,
2015]. Their applicability to questions from structural biology is thus an open question.

Prior to this PhD, there was almost no biological application of these methods. Our results
indicate that structural biology applications are fruitful and that respecting the structural data
prior enhances results. Several other papers in the recent literature confirm these findings.

Moreover, our first chapter makes use of a general theoretical result about equivariant net-
works. This illustrates how a general theory can be applied to obtain theoretical results for
specific regularities of the data. To summarize, the current fast-paced methodological develop-
ments of geometric deep learning help to model structural biological data.
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CHAPTER 9. CONCLUSION

Dedicated methods are needed for structural biology We established that expanding the al-
lowable representations is beneficial for learning on structural data. This is especially true in
cases where the established modeling of the molecular structures falls into one of these repre-
sentations. It was illustrated in our work with the representation of RNA as 2.5D graphs, that
is both established within the biologists community and now manageable with graph neural
networks. We show in our work that in this ideal case, we can offer new efficient pipelines.

However, this is not always the case as there is no consensus on the representation to use
for biomolecules. Therefore, we must rely on empirical performance to choose a representa-
tion rather than another. Defining a performance assumes that we have biologically relevant
benchmarks, which was recently pioneered by [Townshend et al., 2021] but not yet adopted by
the community. Moreover there is no canonical way to model a protein as a surface or as a
graph. Since the empirical performance relies on the successive steps of modeling and learning,
the benchmark does more than just comparing learning methods. Finally, the geometric deep
learning field is more mathematically involved than more classical methods, which creates a
negative bias against adoption of better performing but less accessible methods.

For these reasons, it is often not trivial to know which geometric deep learning model to
use for a given structural biology application. This has resulted in the parallel design of tens
of dedicated methods trying to bend existing geometric deep learning methods into a solution
for each application. One could also argue that each application might have a different optimal
modelling. In our work, we have found geometric methods to work well on discrete structures,
whether it be finite groups or graphs with categorical edges. We have struggled to use equivariant
networks for the continuous group of rotations and have found volumetric CNNs to outperform
them for learning on protein structure. We believe however that coupling the methodological
developments with their application would result in much better performance. For instance, one
could imagine a neural network taking as input several representations of the protein structure
and using the several distances induced to learn in the most efficient way. We will investigate
this direction in future work.

Validation on biological tasks is challenging We mentioned how we ultimately rely on empirical
performance to choose and develop our tools. The first step of designing a benchmark is to
choose several tasks of interest that practitioners should try to solve, which was proposed by
[Townshend et al., 2021]. However, there is a second step of carefully choosing measures of
performance on each of those tasks. This involves using the right metrics as well as avoiding
data leakage between the learning and testing sets. Indeed, the data deposited in the PDB is
highly redundant and several slightly modified copies of the same object can appear. A model
trained on one of these copies is expected to perform optimistically well on another.

Such caveats were pointed out recently in [Volkov et al., 2022]. The authors try to learn
affinity values of protein-ligand complexes and show that models trained only using the ligand
perform as well as ones trained on the complex. This is a nonsensical result that sheds light on
biases in the validation. These biases have been undetected for years and several papers were
published over this shaky validation. In our work, we advocate for a careful design of the splits
based on a low sequence identity and different structure classes such as CATH classes. However,
we acknowledge that these controls are flawed and two proteins from different CATH classes
can have almost identical local structural features. Finding automated ways to challenge our
models and detect artificially high performances - for instance with the use of counterfactual
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explanations - is another promising research direction.

Tool adoption depends on deployment as much as performance The empirical performance we
discussed are all based on a posteriori usage of data. However, the ultimate goal of this extracted
knowledge is to be used on new unknown instances of problems, such as the design of drugs for
a new target. To mimic this use case, several papers use temporal data splitting that amounts
to predicting the recent past from the more ancient past. Thus, when presented with some new
data like a new target, it makes sense to use the best tool according to metric performance on
such a split. However, it is far from being the sole ground for this choice. Among classical other
factors are interpretability of the model or its computational efficiency.

We underline the importance of the deployment of produced tools. In this fast-paced field, the
ability to use a tool quickly and without disproportionate efforts is as important as performance.
From our experience, it is far from standard to be able to use published tools. This hurts both
the adoption of the tools and the trust one puts in results that cannot be reproduced. In
our thesis, we have systematically released public, cleaned, commented versions of our code.
We have additionally implemented two web servers, one graphical interface and released three
python packages. We advocate for deployment to become a required publishing standard and
hope that scientific journals will gradually impose reproducibility requirements and incentivize
user-friendly tool packaging.

Next steps on the long way to go The final challenge for machine learning methods to actually
help drug design is to identify bottleneck tasks and pain points in an already well-established
pipeline. There is no demand for well packaged, fully validated geometric deep learning models
that solve a trivial or anecdotal task. This is all the more true considering that, for obvious
reasons, the drug discovery field is particularly risk-averse. Thus, new tool adoption is espe-
cially challenging and disrupting the pharmaceutical pipeline is arduous. This thesis modestly
contributes to a wide community effort that believes there is an opportunity to disrupt it with
machine learning.

A reasonable way to push in this direction is to address all questions independently, conduct-
ing specialized research. However, we believe in an integrative approach including methodolog-
ical and fundamental contributions that are motivated by application’s insights. It necessarily
relies on interdisciplinary collaboration. Such approach has permitted the elaboration of Al-
phaFold [Jumper et al., 2021], arguably the most impactful scientific application of machine
learning methods, that happens to address another key structural biology question. This is also
the research philosophy we have tried to follow throughout this PhD and hope it will appeal to
evermore researchers in the future.
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graphs, geodesics, and gauges. Technical Report 2104.13478, arXiv, 2021. 7, 27

D. H. Brookes and J. Listgarten. Design by adaptive sampling. CoRR, abs/1810.03714, 2018.
URL http://arxiv.org/abs/1810.03714. 110, 111

D. H. Brookes, H. Park and J. Listgarten. Conditioning by adaptive sampling for robust design.
arXiv preprint arXiv:1901.10060, 2019. 110, lxxviii

B. R. Brooks, C. L. Brooks III, A. D. Mackerell Jr, L. Nilsson, R. J. Petrella, B. Roux, Y. Won,
G. Archontis, C. Bartels et al. Charmm: the biomolecular simulation program. Journal of
computational chemistry, 30(10):1545–1614, 2009. 16, 102
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C. Theis, C. Höner zu Siederdissen, I. L. Hofacker and J. Gorodkin. Automated identification of
rna 3d modules with discriminative power in rna structural alignments. Nucleic acids research,
41(22):9999–10009, 2013. 62

B. C. Thiel, I. K. Beckmann, P. Kerpedjiev and I. L. Hofacker. 3d based on 2d: Calculating
helix angles and stacking patterns using forgi 2.0, an rna python library centered on secondary
structure elements. F1000Research, 8, 2019. 55

J. R. Thomas and P. J. Hergenrother. Targeting rna with small molecules. Chemical reviews,
108(4):1171–1224, 2008. 43

N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff and P. Riley. Tensor field
networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv
preprint arXiv:1802.08219, 2018. 9, 16, 19, 27, 34

146

https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1093/bioinformatics/btaa1092


BIBLIOGRAPHY

I. Tinoco Jr and C. Bustamante. How RNAfolds. Journal of molecular biology, 293(2):271–281,
1999. 43

R. Torchet, K. Druart, L. C. Ruano, A. Moine-Franel, H. Borges, O. Doppelt-Azeroual, B. Bran-
cotte, F. Mareuil, M. Nilges et al. The iPPI-DB initiative: a community-centered database of
protein–protein interaction modulators. Bioinformatics, 1 2021. doi: 10.1093/bioinformatics/
btaa1091. 18, 87, 88, 89

W. Torng and R. B. Altman. Graph convolutional neural networks for predicting drug-target
interactions. Journal of Chemical Information and Modeling, 59(10):4131–4149, 2019. 15, 45

R. Townshend, R. Bedi, P. Suriana and R. Dror. End-to-end learning on 3d protein structure
for interface prediction. Advances in Neural Information Processing Systems, 32:15642–15651,
2019. 15, 87
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APPENDIX A. A GENTLE INTRODUCTION TO THE GENERAL CONCEPTS OF THE
THESIS

A.1 Machine learning

In this part, we will first motivate the use of machine learning as the continuation of a century-
old process of explaining reality through models based on empirical observations. We will then
explain how machine learning effectively approximates relationships, minimizing the error of
a model by tuning its parameters with optimization algorithms. Then we will bring up the
concept of generalization of a model derived from a limited dataset on new data, based on the
theory of statistics. Finally, we explain that the relationships that we learn can only tie together
mathematical objects, calling for the proper representations of real-world concepts into these
mathematical objects.

A.1.1 Machine learning stems from Natural Sciences

Natural science aims at understanding the world around us better. To that end, mathematics
provides abstract tools to build rational models to support and explain the functioning of reality.
However, experiments are the essential foundation of the development of useful models under the
principle of realism. Generations of scientists have kept designing new general laws inspired by
the limitation of former ones and subsequently validated these laws against experiments, leading
to more and more refined models of our reality. This approach has relied on the introduction of
natural constants, such as the gravitational constant. Beautifully, very few constants naturally
mix to explain most phenomenons arising around us. However, the values of these fundamental
numerical constants are not justified by mathematical ground reasons and thus, these values
were simply tuned to make our models explain reality in the best possible manner. For instance,
Newton’s famous law of universal gravitation states that : F = G m1.m2

d2
, where F denotes the

force of the attraction of two objects of respective masses m1 and m2, at a distance d from
each other, and G is a constant named the gravitational constant. Its value was measured to be
G = 6, 674× 10−11m3.kg−1.s−2

This approach of using mathematical tools and deriving models from first-principles has en-
abled breakthroughs for centuries but failed for intricate problems such as biological ones. For
several problems, one needs to use modeling. Modeling relies on partial resolution of equations,
classical solutions such as exponential decay or even intuition, yielding a parametric mathemat-
ical equation. The parameters of these equations are considered as new constants, such as the
half-life of a molecule, without a holistic understanding of their nature or their specific values.
These values are set according to their ability to match experimental data. For instance, first
order chemical reactions or radioactive disintegration follow exponential decays. Oxygenated
water(H2O2) decomposes in water following such a law. Starting from an initial concentration

C0, its concentration through time evolves as C(t) = C02−
t
τ , where τ is the half-life of H2O2 in

water. This value was computed based on experimental data.

Machine learning was introduced as a set of algorithms able to get better performance based
on acquiring experience. Empirical measurements can be considered experience and this ap-
proach of adjusting a model’s parameter based on experimental data consists in statistical ma-
chine learning. In modern machine learning and deep learning, the size of the data has grown
to extents where the most efficient models now often bypass the manual crafting of parameter-
efficient models that encode human intuition. Instead, the parameters of the model lose the
status of universal constant and are thought to approximate an underlying but unknown model.
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A.1. MACHINE LEARNING

This way of reasoning raises questions about the trust one can put in a model one does not
understand, but the results are so good and easy to produce that it has overwhelmed many re-
search fields. Equipped with these models, one could imagine using them as a proxy of previously
unreachable truth to build mechanistic and more reliable models. For instance, professional Go
or Chess players routinely use the prediction of machine learning models to learn how to play
themselves.

A.1.2 Statistical machine learning approximates relationships

A first way to formally introduce machine learning is function approximation. Let h : [0, 1] −→ R
be a quadratic function : h(x) = ax2 + bx + c, (a, b, c) ∈ R3 and let us imagine that we have
a tabular representation of this function on a regularly spaced grid with n steps of 0.1 (i.e. we
know h(0), h(0.1)...). Finally, let us imagine that we want to approximate this unknown function
on these grid points with a linear function.

One approach to do so resembles machine learning. Let us define the parametric function
fθ(x) = θ1x + θ0,with parameters θ = (θ0, θ1) ∈ R2. This just says that fθ is a linear function
with unknown slope and intercept. Define as the point-wise error the square of the difference
between a predicted value and the true value. Define as the loss L, the mean of this point-wise
error on each grid value : L(θ) = 1

n

∑
x∈{0,0.1...1}[h(x) − fθ(x)]2. This loss represents the total

error of our parametric function to approximate the function h. To get the best approximation,
one want to minimize this loss with respect to the parameters of f(θ0,θ1). In machine learning, this
minimization is often done using variations on the gradient descent algorithm, that consists in
iteratively adjusting the parameters in the opposite direction of the gradient : θ(t+1) = θ(t)− ∂L

∂θ .
This general procedure of minimizing the error of a parametric model enables us to automatically
find the best parameters and is referred to as learning . This is illustrated in Figure A.1.
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Figure A.1 – The dashed line represents the unknown function and the blue points are our
observed data points. Left : The function h(x) = 10 ∗x2 + 2 ∗x+ 1 observed on a regular grid.
Right : Visualization of the iterations of optimization ; the model is randomly initialized and
converges towards the optimal solution.

In current machine learning, the sum of square error and the gradient descent algorithm
described above are routinely used (along more complex ones). However, the approximated
functions and the models used are much more complex. The other big difference is that this
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unknown function is not observed on a grid but through empirical observations described as
statistical samples.

A.1.3 Real world data as statistical samples

Informally, the theory of statistics assesses the relevance of extrapolating from a finite number
of examples to a general knowledge. Intuitively, if we give a treatment to three rats and no
treatment to three others, we will be more likely to observe a difference by chance than if we
had given it to two populations of thousands of rats. Statistics formalize this intuition and
provide tools to compute the probability that the treatment has an effect. A random variable is
a quantity that depends on a random event, for instance the value of a dice. The distribution
of a random variable consists of the frequencies of each observed value if we had infinitely many
representative examples. For instance, a normal dice results in a uniform distribution : where all
values of a dice appear with a frequency of one sixth. A statistical sample denotes realizations
of these distributions, for instance rolling a dice once. Properties from the distribution can be
estimated from samples, for instance one can compute the frequency of ones or the mean value
of our dice rolls. Given a certain number of samples and a statistical model, we can assess
the probability that properties derived from the finite sampling reveal something about the
underlying distribution.

The statistical learning framework relies on this theory to infer general relationships from
finite data. In the example setting above, our data was observed on a fixed, regular grid.
However, in the usual setting, the data at hand is considered as independent samples from a
hidden, unknown, underlying distribution : (x, h(x)) ∼ D. In this formulation, the loss as
formulated above (mean error over the whole data) can be seen as an estimate of the loss
over the distribution. This lays the ground for stochastic optimization [Bottou, 2010] that uses
sub-samples of m data points to compute an easier, unbiased estimate of this expected loss :

L(θ) =
1

n

∑
x1,2,..n∼D

(h(x)− fθ(x))2

∼ Ex∈D[h(x)− fθ(x))2]

∼ 1

m

∑
x1,2,..m∈D

(h(x)− fθ(x))2

This trick of computing the loss only on reduced sub-samples of the data enabled scaling machine
learning to huge data sets.

Moreover, this framework enables thinking about noise of the observations. First of all,
the samples only give us a partial glimpse of the distributions we observe. Two different data
collections will give two different models, as illustrated in Figure A.2. Moreover, the function
values are also very often assumed to be noisy, for instance because of labeling errors. The
statistical framework can be used to model these sources of uncertainty and to quantify the
trust one can put in a model’s prediction [Gal et al., 2016].
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Figure A.2 – Two different samples from the same data and noise distributions and the same
underlying relationship give two different observed data sets. This results in different estimated
functions through machine learning.
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A.1.4 Data needs to be represented in a computer

Now that we have formally described our data set using statistics, we can be stuck with objects
that do not really fit in a computer. For instance, we can gather data about the solubility
of molecules, but to apply a mathematical function over molecules, we need another step of
representing them into our computer. If this representation is too coarse, it will be impossible
to learn a meaningful relationship - for instance if we represent the molecules only with their
weight. However, to extract relationships from a high-dimensional representation, one has to
have enough data.

For a long time, machine learning relied on feature vectors : fixed-size, numerical represen-
tation that encodes a representation of an object. For instance small molecules can be depicted
as ”fingerprints” [Durant et al., 2002] : a fixed-size list of numbers that each denote the presence
or absence of certain molecular groups. Similarly, the presence of some words, grammar or
punctuation could be counted to represent emails or surfaces of rooms to represent apartments.
Then, a model can be learnt from this feature vector, for instance to detect spam or predict the
price of the apartments.

When trying to model the relationships between two concepts, we might already know some
aspects of this relationship, for instance large apartments tend to cost more than small apart-
ments, so we might constrain our parametric function to be increasing. We also know that
spam mails will more often ask your bank details so we could include this in our mail represen-
tation. Choosing the right representation for our data is often about injecting the right prior
information.

In recent years, the amount of available data and computing power has skyrocketed, leading
to an era of also learning the representation function, coined as representation learning. Com-
posing functions together led to a formalism of layers - composing with one more function is
seen as adding a layer - in turn leading to the term deep learning. Deep learning often operates
directly on the raw data, such as the pixel of images.

The more data we have, the more we can expect the model to learn itself about the priors
and the less important they become. Using feature vectors based on expert knowledge means
injecting a lot of prior information, whereas deep learning methods use little prior domain
knowledge and learn from scratch - and from more data. However, without using domain
knowledge, some first-principles constraints can be leveraged to avoid nonsensical behavior of
the learnt function. For instance, arbitrary data representation decisions should not impact the
output of the model. Some models were designed to respect such first principles when the data
is endowed with some mathematical properties. These methods will be the focus of Section 1.2.

viii



A.2. STRUCTURAL BIOINFORMATICS

SampleSample

Samples x Samples y

Representation of x Representation of y

Observations

Model

RepresentRepresent

Underlying P(x) Underlying P(y)

Hidden truth

Correlation

Empirical correlation

Parametric function fθ

Figure A.3 – The statistical machine learning framework. A hidden relationship ties two
random variables with unknown distributions. To model it, we rely on a dataset of examples
considered to be samples from their joint distribution. Once we represent these samples in a
computer, we can perform machine learning to approximate the relationship between the two
variables.

A.2 Structural bioinformatics

Molecular biology is complex, because it describes the underpinning of arguably the most com-
plex systems : living systems. An actual explanation of molecular biology is out of the scope of
this introduction. We will restrict ourselves to a short introduction describing what cells are and
what are their constituting parts. We will go on by introducing the structural biology approach
that uses the 3D structure of molecules to explain the functioning of cells. Finally we show how
computational and in-silico approaches help structural biology. For a more detailed explanation
and references for a lot of claims in these paragraphs, we recommend the classic book of Alberts
et al. [2003].

A.2.1 Living systems have a hierarchical organization with cells as the main unit

Molecular biology starts at the atomic scales based on structured biochemical objects and builds
a bottom-up model of how the living systems work. Atoms are organized in molecules that
assemble to form organelles that in turn form cells. Some organisms are made of a single cell,
most famously bacteria. Other living systems are composed of many cells (∼1013 for a human
[Sender et al., 2016]) that are often organized in tissues : a set of cells that have the same
function, muscles for instance. These tissues form organs that form organisms organized in
populations and ecosystems. This hierarchical organization spans many fields of biology.

Cells are the main functioning unit of living systems and represent a key scale of study. Cells
are approximately 10 microns large - 105 times the inter-atomic distance - and are delimited by
a lipid membrane called the cell membrane. As mentioned above, cells contain subparts deemed
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as organelles. Important organelles include their membranes, cytoplasm (the fluid encompassed
by the membrane), mitochondria (that produce the energy of the cell). Eukaryotic cells also have
a nucleus, while some unicellular organisms do not (prokaryotic cells). Nuclei is a container for
the genomic information that enables cells to replicate and function.

A.2.2 Cell functioning relies on a genetic information flow

The genomic information necessary to replicate itself is contained in sequence polymers called
DeoxyriboNucleic Acid (DNA). DNA is used to produce another sequential polymer called Ri-
boNucleic Acid (RNA). RNA is in turn read to produce proteins and this last information flow
cannot be reversed. This theory is known as the central dogma of molecular biology. DNA,
RNA and proteins can be thought as the main building blocks of living systems. They share a
polymeric nature, with a conserved backbone that polymerizes and some variability in groups
attached to it.

In DNA, the monomers are called nucleic acids and their variable groups are called bases.
There are four possible bases represented by an alphabet of four letters, {A, C, T, G}. DNA is
organized in only a few polymers, named chromosomes. These are very long in human cells,
about 107 bases per chromosome. These long molecules assemble pair-wise, forming a double-
stranded helix stable structure. This molecule can get copied in a process called DNA replication.
This enables cells to divide in two, with a copy of DNA in each resulting cell, in turn enabling
cell replication.

RNA have a similar backbone with a chemical modification (Deoxyribo- vs Ribo-Nucleic
Acids) and similar bases represented as letters from the alphabet {A, C, U, G}. RNA is produced
from DNA in a process called transcription. It corresponds to a one-to-one mapping where
DNA nucleotides are turned into RNA nucleotides. However this process produces much shorter
polymers (∼103 nucleotides) that represent sub-parts of the DNA polymers. Overall, most of
DNA is transformed into RNA (∼90% in humans) [Pertea, 2012].

Proteins are built from other monomers called amino acids, and whose variable groups are
called side-chains. There are 20 main amino-acids that are decoded from RNA bases triplets
following a deterministic, redundant code known as the genetic code. This process is called
translation and happens on only a small fraction of RNA in humans (∼2% [Collins et al., 2004])
and a larger one in bacteria. This flow of genetic information is depicted in Figure A.4.

A.2.3 Cell function results from structure

We have explained that cells replicate by copying their DNA and how DNA is turned into RNA
and proteins. Let us now explain how these phenomena happen and more generally how cells
fulfill their functions.

Most cellular functions rely on molecular processes - chemical reactions and interactions. A
single chemical reaction or cellular event can trigger a biochemical cascade of reactions, known
as signaling pathways, that can alter the function of the whole cell. These signaling pathways
involve RNA and protein molecules as well as several bio-molecules bound together, denoted as
complexes. For instance, the aforementioned process of turning RNA into proteins involves a
complex called the ribosome, which involves almost one hundred protein and RNA molecules.
Signaling pathways usually also involve small molecules that are not bio-polymers, as well as
changes in metabolite concentration, electric potential or other physical quantities.
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Figure A.4 – The central dogma of biology, DNA is turned into RNA that is turned into
proteins. Edited from Genome Research Limited.

These intricate interactions depend on their 3D shape, or molecular structure, because the
equations of physics and chemistry explicitly use the relative positions of atoms. An example
protein structure is given in Figure A.5. Moreover, beyond this static view of structure, these
shapes change through time, and their successive static states are known as conformations. Based
on statistical physics reasoning, molecular properties derive from the ensemble of conformations
it takes, motivating methods that use the structure of different conformations.

Some fields of biology only implicitly take this dependence in structure into account, by
making wet-lab experiments that bypass a molecular understanding of the molecular processes.
To reach this understanding, one needs to find - or resolve - the structure of the objects and
how these structures interact with one another. This approach is denoted as structural biology.

A.2.4 Structural bioinformatics help understanding living systems

Several experimental measurements contribute to structural biology, some of them in an indirect
way, such as mass spectrometry that helps determine the mass of a molecule. The most classical
experimental measurement of structural biology is X-ray crystallography, that requires a crystal
of the molecule one wants the structure of, but enables an atomic resolution of this structure.
Nuclear Magnetic Resonance (NMR) experiments reveal some inter-atomic distances in an indi-
rect way, which can in turn help resolving the structure of bio-molecules such as proteins. The
last major experiment is Cryogenic Electron Microscopy (cryoEM) that is the closest technique
to a traditional picture using electrons instead of light on a frozen sample. Other techniques
include small angle X-ray scattering or laser spectroscopy.
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Figure A.5 – Structure of MDM2 (in blue) bound to the activation domain of p53 (in red)
- a protein involved in 50% of cancers. On the left, all heavy atoms are represented while
a schematic classical view is shown on the right. Upon DNA damage, p53 stops the cell
replication and eventually induces cell death. MDM2 is a protein that degrades p53, preventing
this interaction was shown to have an anti-cancer effect [Ozaki and Nakagawara, 2011; Vassilev
et al., 2004].

In-silico methods are a complementary way to address the structural biology challenges of
resolving the structure. These methods have offered an automated way to process the aforemen-
tioned experimental data to resolve the structure. The results of this joint effort has led to the
creation of the Protein Data Bank (PDB) [Berman et al., 2000] with about 200 000 structures
(see Figure A.6).

Some algorithms, deemed as folding algorithms, also try to predict the structure directly
from the sequence of a bio-polymer. A notoriety peak for these methods was reached with
the release of the successive versions of AlphaFold that reached experimental precision in the
folding of a single sequence [Jumper et al., 2021; Senior et al., 2020] or multimeric structures
[Evans et al., 2021]. In addition to these static tools, Molecular Dynamics (MD) are a class of
algorithms that try to sample conformations of a given molecule. All of these experimental and
computational tools give us access to the structures of biomolecules.

A plethora of computational tools then try to predict functional aspects of these molecules
based on their structure, such as their physico-chemical properties or their interactions with
other macro-molecules or with small molecules. However, the physical equation governing the
behavior of such big objects is not tractable. Heuristics were developed to approximate these
results, intrinsically based on their accordance with experimental data. In the last twenty
years, along with the rise of machine learning, more and more data-driven approaches were
developed in the field of structural bioinformatics. The recent establishment of geometric deep
learning helps respect the mathematical properties that derive from the structured nature of
this data. Moreover, the dynamic nature of bio-molecules has been underused because of the
extra computational burden and represents a promising research direction. Finding how to
best use machine learning methods on structured biological objects is one of the focuses of this
dissertation.
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Figure A.6 – Cumulative number of structures deposited in the PDB [Berman et al., 2000],
split by method.

A.3 Small Molecules and Drug Discovery

Let us now introduce the field of computational small-molecule drug discovery, in light of previous
sections. This field tries to find active molecular compounds that can be administered to humans
to cure a disease. This is a challenge because the number of possible compounds makes this
problem like finding a needle in a haystack. Traditional pipelines exist, but are slow and costly.
An approach to address the drug discovery problem is based on structural biology. The recent
developments in machine learning for structural biology could thus help find novel solutions for
drug discovery.

A.3.1 The size of the chemical space calls for simulation methods

It is of paramount importance to try and grasp the size of the admissible chemical space in which
one should look for therapeutic drugs, as well as the complexity of the task of just correcting the
malfunctioning pathway when altering the immensely complex cell functioning. Designing a drug
takes approximately 15 years and 2 billions dollars. Based on some basic rules, an estimation
of the number of compounds that could represent a potential drug is a whooping 1023∼1060

[Bohacek et al., 1996; Ertl, 2003; Polishchuk et al., 2013]. The lowest estimates approximately
correspond to the number of drops of water in the ocean.

The most stringent limitation to this huge chemical space is its synthesizability, because
modern chemistry can only produce a fraction of these compounds. The largest databases of
commercially available compounds are the ZINC database (∼108 compounds) [Sterling and Ir-
win, 2015] or CHEM-BL (∼106 compounds) [Gaulton et al., 2012]. The larger Enamine database,
filled with compounds that we know how to synthesize, contains ∼1010 compounds. These num-
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bers represent only a fraction of the potential drug-like space, which is a comforting reality
for bioinformaticians who cannot deal with the whole space. However, there is a need for the
exploration of a wider proportion of this space for two main reasons. The first one is that by
limiting ourselves to this fraction, we most probably miss out on the best possible drugs with
the least side-effects. The second one is more practical : some chemical families are patented
and a wider and wider part of this available chemical space is now uninteresting to pharmaceu-
tical companies as they would not be able to produce the retrieved compounds without paying
patent rights. In short, the chemical space we need to address contains between 1023 and 1060

compounds. However, most pharmaceutical assays can now explore 106 compounds in assessing
the binding to a given target. In some precise cases, new techniques manage to explore 109

compounds generated in a combinatorial fashion [Satz et al., 2022] but cannot test a given list
of compounds. Then the toxicity assays conducted on mice and humans will investigate the
effect of at most tens of candidates. Boiling down this huge chemical space to a short list of
compounds that can be sent to wet-lab assay is the focus of in silico drug discovery. Continuing
on our analogy, there are approximately 106 drops of water in a bucket. We are searching for a
drop in the oceans but can only test the contents of a bucket. Drug design aims at finding the
most promising bucket.

A.3.2 Molecular interactions are the foundations of drug action

Insights from structural biology are key to drug discovery. Indeed, any disease is a symptom
to a set of dysfunctions at the molecular level. Drugs are small molecules or compounds that
interact with a bio-molecule and affect its functioning. Therapeutic drugs therefore try to fix
the malfunctioning aspect at the molecular level, for instance by blocking an interaction between
a pathogen and its host. The specific way a given drug alters the cellular process is called the
Mechanism Of Action (MOA) and is known for a lot of drugs, such as aspirin [Smith and Willis,
1971].

The bio-molecules a compound is supposed to bind to are called its targets. Identifying the
malfunctioning pathways, deducing a therapeutic target and then looking for a small molecule
that could bind to this target is known as the target-centric or structure-based approach for drug
discovery [Chen et al., 2016; Gao and Skolnick, 2013; Hughes et al., 2011]. The other major
approach to drug discovery is known as ligand-centric approach, that relies on experimental
assays for activity and ligand comparison. It leverages the assumption that similar compounds
have similar activities. The search for potential drugs is done by refining iteratively an initial
diverse population of compounds. It does not however offer an MOA for its potential success
[Lyne, 2002]. Usually both ligand-based and target-based approaches are used concurrently,
in an iterative process until a population of drugs that have a good enough binding affinity
is reached. Finally, some studies compared these approaches and proposed synergistic ways
to combine these approaches [Broccatelli and Brown, 2014; Hawkins et al., 2007], an avenue
increasingly explored by more recent papers [Aumentado-Armstrong, 2018].

A.3.3 Machine learning to assist drug discovery

Machine learning has already been very successfully applied to ligand-based drug discovery, but
has the potential to also revolutionize target-based approaches. The intricate relationships that
govern structural biology and drug discovery are out of the scope of exact methods, but can be
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approximated with machine learning models. This requires careful design for several reasons.
The data at hand is hard to obtain, gather and understand. Decades of research have tried
to understand these relationships one at a time and for now we cannot afford to disregard it
and use models obtained de-novo. Moreover, current drug discovery pipelines involve several
steps and finding which ones are the most promising to apply and the most urgent to solve needs
interdisciplinary expertise. Finally, because of its structural nature, this data has an intrinsic set
of regularities that mainstream machine learning models do not respect. Therefore, we believe
that the opportunity of helping the drug discovery with machine learning must take into account
prior knowledge about the problems and the data at hand with care. We try to explore this
research direction in the following dissertation.
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Appendix B

Reverse-Complement Equivariant Networks
for DNA Sequences - Appendix

B.1 Illustration of group actions

This section is intended to provide a visual, more intuitive understanding of the different group
actions on the tensors of our network. We begin with a visualization of the group action for the
input space. We exemplify it over the sequence GGACT, whose reverse complement is AGTCC. The
sequence is one hot encoded as explained in the main text and the group action over Z2 consist
in flipping the tensor along the spatial axis and swapping the channels pairwise.


0 0 1 0 0
0 0 0 1 0
1 1 0 0 0
0 0 0 0 1




1 0 0 0 0
0 0 0 1 1
0 1 0 0 0
0 0 1 0 1


A
C
G
T

A
C
G
T

π(−1)

π(−1) ◦ π(−1) = I

Now we illustrate the actions of other representations, on an example tensor

[
1 2 3
4 5 6

]
with

two channels (of type a or b) and three positions; this could typically be the representation of
an input sequence of length 3 in an intermediate layer of dimention 2. Choosing the canonical
representations of type (I, 2, 0), (I, 0, 2) and (I, 1, 1) respectively, we get the following group
actions (for clarity we add the channel type, a or b, near each matrix row):
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[
1 2 3
4 5 6

] [
3 2 1
6 5 4

]
a
a

a
a

π(−1)

π(−1) ◦ π(−1) = I

[
1 2 3
4 5 6

] [
−3 −2 −1
−6 −5 −4

]
b
b

b
b

π(−1)

π(−1) ◦ π(−1) = I

[
1 2 3
4 5 6

] [
3 2 1
−6 −5 −4

]
a
b

a
b

π(−1)

π(−1) ◦ π(−1) = I

Finally, when using different values for P, we can get other group actions. As mentioned in

the main text, by choosing (Preg, 1, 1), where Preg =

[
1 1
1 −1

]
, we get the regular representation

that flips the input channel. We also provide an example of the group action for a general P

matrix, by choosing (Pgeneral, 1, 1), where Pgeneral =

[
1 3
1 −1

]
, we get a representation on the

fibers ρgeneral =

[
−0.5 1.5
0.5 0.5

]

[
1 2 3
4 5 6

] [
6 5 4
3 2 1

]
Reg Reg

π(−1)

π(−1) ◦ π(−1) = I

[
1 2 3
4 5 6

] [
5.5 6.5 7.5
2.5 3.5 4.5

]
General General

π(−1)

π(−1) ◦ π(−1) = I
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B.2. PROOF OF THEOREM ??

Over the course of these examples, we have limited ourselves to the case where the input
tensor had only three nucleotides and two channels, but this is coincidental. The representation
with arbitrary P can mix an arbitrary number of channels together with the group action.

B.2 Proof of Theorem 1

Proof. The irreducible representations (irreps) of the 2-elements group Z2 are the 1-dimensional
trivial and sign representations, given respectively by ρ1(s) = 1 and ρ1(s) = s. Any representa-
tion ρn can be decomposed as a direct sum of irreps, and since each irrep is 1-dimensional this
means that there exists an invertible matrix P such that Pρn(s)P−1 is diagonal, with diagonal
terms either equal to 1 or equal to s. If we denote by an (resp. bn) the number of diagonal terms
equal to 1(resp. s), then Theorem 1 follows.

B.3 Proof of Theorem 2

Proof. Cohen et al. [2019b, Theorem 3.3] gives a general result about linear equivariant mapping.
We first show that this result can be applied here, to show that these linear mappings are exactly
the ones written as (2.2) and (2.3). For sake of clarity, we then provide a fully self-contained
proof of the same result.

Let us first show that (2.2) and (2.3) correspond to a particular case of Cohen et al. [2019b,
Theorem 3.3]. Under the notations of Cohen et al. [2019b], our group is G = Z o Z2, a locally
compact, semi-direct product group. We choose H = H1 = H2 = Z2, making the coset space
G/H = Z. Since our group is a semi direct product group, we have h1(x, s) = s. The spaces Fn
that we have considered are signals in RD over the coset space, acted upon by the representation
induced by ρ. Equivalently, they are sections of the associated vector bundle for the trivial case
of a product group. Therefore, these Fn exactly coincide with the setting of Cohen et al. [2019b,
Theorem 3.3] and {φ : Fn → Fn+1|πn+1φ = φπn} is exactly H. Then, by Cohen et al. [2019b,
Theorem 3.3], φ : Fn → Fn+1 is equivariant if and only if it can be written as a convolution:

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

κ(y − x)f(y) , (2)

where the kernel κ : Z→ RDn+1×Dn satisfies:

∀x ∈ Z s ∈ Z2, , κ(sx) = ρn+1(s)κ(x)ρn(s−1) . (B.1)

Using that for s ∈ Z2, s
−1 = s, and the triviality of this equation for s = 1, we get that (B.1) is

equivalent to (2.3)

For sake of clarity and completeness, we now provide a more explicit and self-contained proof
for (2.2) and (2.3), that follows the one of Weiler et al. [2018a, Theorem 2] in our specific setting.
We first notice that any linear mapping φ;Fn → Fn+1 can be written as

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

k(x, y)f(y) ,
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for some function k : Z2 → Rdn+1×dn . For any g = ts ∈ G, the action of G on Fn+1 gives:

∀(f, x) ∈ Fn × Z , πn+1(g)φ(f)(x) = ρn+1(s)φ(f)(s(x− t))

= ρn+1(s)
∑
y∈Z

k(s(x− t), y)f(y) . (B.2)

Similarly, the action of G on Fn followed by φ gives:

∀(f, x) ∈ Fn × Z , φ(πn(g)f)(x) =
∑
y∈Z

k(x, y)πn(g)f(y)

=
∑
y∈Z

k(x, y)ρn(s)f(s(y − t))

=
∑
y∈Z

k(x, sy + t)ρn(s)f(y)

(B.3)

where we made the change of variable y 7→ sy+ t to get the last equality. φ is equivariant if and
only if, for any g ∈ G, φ ◦ πn(g) = πn+1(g) ◦ φ, which from (B.2) and (B.3) is equivalent to:

∀(f, x) ∈ Fn × Z , ρn+1(s)
∑
y∈Z

k(s(x− t), y)f(y) =
∑
y∈Z

k(x, sy + t)ρn(s)f(y) . (B.4)

For any y0 ∈ Z and v ∈ RDn , let us apply this equality to the function f ∈ Fn given by f(y0) = v
and f(y) = 0 for y 6= y0:

∀(x, y0, v) ∈ Z× Z× RDn , ρn+1(s)k(s(x− t), y0)v = k(x, sy0 + t)ρn(s)v .

Since this must hold for any v ∈ RDn this necessarily implies:

∀(x, y0) ∈ Z2 , ρn+1(s)k(s(x− t), y0) = k(x, sy0 + t)ρn(s) .

With the change of variable y = s(y0 − t), this is equivalent to:

∀(x, y) ∈ Z2 , ρn+1(s)k(s(x− t), s(y − t)) = k(x, y)ρn(s) ,

which itself is equivalent to

∀(x, y) ∈ Z2 , k(s(x− t), s(y − t)) = ρn+1(s)k(x, y)ρn(s) , (B.5)

where we used the fact that ρn+1(s)2 = ρn+1(s2) = I for any s ∈ Z2. This must hold in particular
for s = 1 and t = x, which gives:

∀(x, y) ∈ Z2 , k(0, y − x) = k(x, y) ,

i.e., k is necessarily translation invariant in the sense that there must exist a function κ : Z →
RDn+1×Dn such that

∀(x, y) ∈ Z2 , k(x, y) = κ(y − x) .

From (B.5) we see that κ must satisfy

∀(x, y) ∈ Z2 , κ(s(y − x)) = ρn+1(s)κ(y − x)ρn(s) ,

xx



B.4. RESOLUTION OF THE CONSTRAINT FOR OTHER BASIS

which boils down to the following constraint, after observing that the constraint is always true
for s = 1 and is therefore only nontrivial for s = −1:

∀x ∈ Z , κ(−x) = ρn+1(−1)κ(x)ρn(−1) . (B.6)

At this point, we have therefore shown that an equivariant linear function must have an expansion
of the form

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

κ(y − x)f(y) ,

where κmust satisfy (B.6). Conversely, such a linear layer trivially satisfies (B.4), and is therefore
equivariant. This proves (2.2) and (2.3).

To prove (2.4), we simply rewrite (2.3) using Theorem 1:

∀x ∈ Z , κ(−x) = Pn+1Diag(Ian+1 ,−Ibn+1)P−1
n+1κ(x)PnDiag(Ian ,−Ibn)P−1

n . (B.7)

Thus writing the matrix K = P−1
n+1κ(x)Pn by blocs of sizes an+1 × an, an+1 × bn, bn+1 × an

and bn+1 × bn, we have :

(B.7) ⇐⇒ K(−x) = Diag(Ian+1 ,−Ibn+1)K(x)Diag(Ian ,−Ibn)

⇐⇒
[
α(−x) β(−x)
γ(−x) δ(−x)

]
=

[
α(x) −β(x)
−γ(x) δ(x)

]
This gives us the equivalence (2.3) ⇐⇒ (B.7) ⇐⇒ (2.4).

B.4 Resolution of the constraint for other basis

To go from an arbitrary representation (P, a, b) to another, we can write an odd/even kernel and
change of basis. One may also solve the constraints (2.3) for specific representations, and save
the need of multiplication by Pn+1 and P−1

n in (2.4). In this section, we solve the constraint
in other basis, to go from one kind of representation (irrep or regular) to another. We just
substitute the correct representation and see what constrained kernel it gives. The irrep and
regular representations are in a basis such that they write as :

ρirrep =

[
Ia 0
0 −Ib

]
, ρreg =


0 0 . . . 1
...

...
0 1 . . . 0
1 0 . . . 0

 .
We get the following table of constraints :

Fn

Fn+1 ’irrep’ ’regular’

’irrep’

[
α(−x) β(−x)
γ(−x) δ(−x)

]
=

[
α(x) −β(x)
−γ(x) δ(x)

] [
κj,a(−x), κj,b(−x)

]
=
[
κn−j,a(x),−κn−j,b(x)

]
’regular’

[
κa,j(−x)
κb,j(−x)

]
=

[
κa,n−j(x)
−κb,n−j(x)

]
κi,j(−x) = −κn−i,n−j(x) [Shrikumar et al., 2017]
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B.5 Proof of Theorem 3

With a slight abuse of notations, in this section we denote the matrix ρ(−1) simply by ρ ∈ RD×D,
and for any θ : R → R we define θ̃(x) := θ(x) − θ(0). We start with three technical lemmas,
before proving Theorem 3.

Lemma 4. Let h : R → R be a continuous function with left and right derivatives at 0. If there
exists A ∈ R with |A| > 1 such that

∀x ∈ R , h(x) = Ah(A−1x) , (B.8)

then h is a leaky ReLu function, i.e., there exists (α−, α+) ∈ R2 such that

∀x ∈ R , h(x) =

{
α−x if x ≤ 0 ,

α+x if x ≥ 0 .

In addition, if A < −1, then α− = α+, i.e., h is linear.

Proof. Equation (B.8) implies h(0) = 0 and

∀x ∈ R∗ ,
h(x)

x
=
h(A−1x)

A−1x
,

which by simple induction gives more generally:

∀(x, n) ∈ R∗ × N ,
h(x)

x
=
h(A−nx)

A−nx
. (B.9)

The right-hand side of (B.9) for n = 2k converges to h′sign(x)(0) when k → +∞, which by

unicity of the limit must be equal to the left-hand side. As a result, for any x ∈ R, h(x) =
h′sign(x)(0)x, i.e., h is a leaky ReLu function with αs = h′s(0) for s ∈ {−,+}. If in addition

A < −1, then (B.9) for n = 2k + 1 converges to h′−sign(x)(0) when k → +∞. By unicity of the

limit, this implies h′−(0) = h′+(0), i.e., α− = α+.

Lemma 5. Under the assumptions of Theorem 3, if θ̄F is equivariant and if there exists (i, j) ∈
[1, D]2 such that ρij /∈ {−1, 0, 1}, then necessarily θ̃ is a leaky ReLu function.

Proof. For any (i, j), applying the equivariance constraint θ(ρx)i = ρθ(x)i to the vector x = aej ,
for any a ∈ R, gives the equation:

∀a ∈ R , θ(aρij) = ρijθ(a) + (
∑
k 6=j

ρik)θ(0) .

If |ρij | > 1, we can rewrite it as

∀a ∈ R , θ(a) = ρijθ(aρ
−1
ij ) + (

∑
k 6=j

ρik)θ(0) ,

and if 0 < |ρij | < 1 we can rewrite it as

∀a ∈ R , θ(a) = ρ−1
ij θ(aρij)− ρ

−1
ij (
∑
k 6=j

ρik)θ(0) .
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In both cases, this is an equation of the form

∀a ∈ R , θ(a) = Aθ(A−1a) +B ,

where |A| > 1. Subtracting to this equation the same equation written for a = 0 gives

∀a ∈ R , θ̃(a) = Aθ̃(A−1a) . (B.10)

By Lemma 4, θ̃ is a leaky ReLu function.

Lemma 6. Under the assumptions of Theorem 3, if θ̄F is equivariant and if there exists at least
one row in ρ with at least two nonzero entry, then necessarily θ is an affine function.

Proof. Let us suppose that ρ contains at least a row i with two nonzero entries, say ρij 6= 0 and
ρik 6= 0. Then taking x = xjej + xkek with xj , xk ∈ R, the equivariance constraint for the i-th
dimension gives

∀xj , xk ∈ R , θ(ρijxj + ρikxk) = ρijθ(xj) + ρikθ(xk) + Cθ(0) ,

with C =
∑

p/∈{j,k} ρip. Subtracting to this equation the same equation written for xj = xk = 0
allows us to remove the constant term and get

∀xj , xk ∈ R , θ̃(ρijxj + ρikxk) = ρij θ̃(xj) + ρikθ̃(xk) . (B.11)

We now prove that θ̃ is necessarily a leaky ReLu function, i.e., that there exist (α+, α−) ∈ R2

such that θ̃(x) = αsign(x)x, with potentially α+ 6= α−. By Lemma 5 this is true if |ρij | 6= 1 or
|ρik| 6= 1, so we focus on the case |ρij | = |ρik| = 1, which we decompose in two subcases. First,
if ρij = ρik = s with s ∈ {−1, 1}, then taking xj = xk = a in (B.11) gives θ̃(2sa) = 2sθ̃(a), for
any a ∈ R. Second, if ρij = −ρik = 1 (resp. ρij = −ρik = 1), then taking xj = 2a and xk = a
(resp. xj = a and xk = 2a) gives θ̃(2a) = 2θ̃(a). In both subcases, by Lemma 4, θ̃ must be a
leaky ReLu function.

Knowing that θ̃ is a leaky ReLu function with coefficients α+ and α−, in order to prove that
θ is necessarily an affine function (i.e., that θ̃ is linear), we need to show that α+ = α−. For
that purpose, let us first suppose that ρij and ρik are both positive or both negative. Then there
exists a pair (xj , xk) ∈ R2 such that xj > 0, xk < 0 and ρijxj + ρikxk < 0. Similarly, if ρij
and ρik are of different signs, say without loss of generality ρij < 0 and ρik > 0, then any pair
(xj , xk) ∈ R2 such that xj > 0, xk < 0 satisfies ρijxj + ρikxk < 0. In both cases, using the fact
that θ̃ is linear on R+ and on R−, (B.11) gives

α−(ρijxj + ρikxk) = α+ρijxj + α−ρikxk ,

⇐⇒ α−ρijxj = α+ρijxj

⇐⇒ α− = α+ .

We are now ready to prove Theorem 3.
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Proof of Theorem 3. To characterize the functions θ and representations ρ such that θ̄F is
equivariant, we proceed by a disjunction of cases on θ, depending on whether it is affine.

If θ is affine, say θ(x) = αx + β, then θ̄F is equivariant if and only if, for any x ∈ RD,
θ̄RD(ρx) = ρθ̄RD(x) . This is equivalent to

∀(i, x) ∈ [1, d]× RD ,
D∑
j=1

ρi,jθ(xj) = θ

 D∑
j=1

ρi,jxj


⇐⇒ ∀(i, x) ∈ [1, d]× RD ,

D∑
j=1

ρi,j(αxj + β) = α

 D∑
j=1

ρi,jxj

+ β

⇐⇒ ∀i ∈ [1, d] , β

 D∑
j=1

ρi,j − 1

 = 0 .

This shows that if θ is affine, then θ̄F is equivariant if and only β = 0, i.e., θ is linear (case 1 of
Theorem 3), or ρ1 = 1 (case 2 of Theorem 3).

If θ is not affine and θ̄F is equivariant, then by Lemma 6 we know that ρ can have at most
one nonzero entry per row. Since ρ is invertible, it must have at least one nonzero entry per row,
so we conclude that it contains exactly one nonzero entry per row, hence a total of D nonzero
entries. Being invertible, it must also contain at least one nonzero entry per column, so we
conclude that it also contains exactly one nonzero entry per column. Using the fact that ρ2 = I,
we can further clarify how nonzero entries must be organized:

• For a nonzero entry ρii 6= 0 on the diagonal, we must have ρ2
ii = 1, i.e., ρii ∈ {−1,+1}.

• For an off-diagonal nonzero entry ρij 6= 0 with i 6= j, we must have ρijρji = 1, i.e.,
ρji = ρ−1

ij .

Splitting the nonzero entries by sign, this implies that there exists a permutation matrix Π such
that

ρ̂ := Π−1ρ(−1)Π =
a⊕
i=1

(
0 λi
λ−1
i 0

)
⊕

b⊕
i=1

(
0 −µj
−µ−1

j 0

)
⊕ (1)⊕c ⊕ (−1)⊕d , (B.12)

for some (a, b, c, d) ∈ N4 such that a+b+c+d = D and (λ, µ) ∈ Ra+×Rb+. For any i ∈ [1, D], let
us now denote by τ(i) the column corresponding to the nonzero entry of the i-th row of ρ̂, i.e.,
the only index such that ρ̂iτ(i) 6= 0. Then the action of ρ̂ on a vector v ∈ RD has the simple form
[ρ̂v]i = ρ̂iτ(i)vτ(i). By writing the equivariance property ρ◦ θ̄F = θ̄F ◦ρ coordinate by coordinate,
we can therefore say that θ̄F is equivariant if and only if:

∀(i, x) ∈ [1, D]× R , θ(ρ̂iτ(i)x) = ρ̂iτ(i)θ(x) . (B.13)

Let us now consider two possible cases:
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B.6. ADDITIONAL RESULT

• If there exists i ∈ [1, D] such that |ρ̂iτ(i)| 6= 1, then by Lemma 5 θ̃ is a leaky ReLu function,
i.e., there exist (α+, α−, β) ∈ R3 such that ∀x ∈ R , θ(x) = αsign(x)x+ β. In that case, by
(B.13), θ̄F is equivariant if and only if:

∀(i, x) ∈ [1, D]× R , αsign(ρ̂iτ(i)x)ρ̂iτ(i)x+ β = ρ̂iτ(i)

(
αsign(x)x+ β

)
,

⇐⇒ ∀i ∈ [1, D] ,


αsign(ρ̂iτ(i)) = α+ ,

αsign(−ρ̂iτ(i)) = α− ,

β = ρ̂iτ(i)β ,

⇐⇒

{
∀i ∈ [1, D] , αsign(ρ̂iτ(i)) = α+ ,

β = 0 ,

(B.14)

where the first equivalence comes from identifying the coefficients of the linear equation
in x on R− and R+, and the second equivalence comes from the observation that the two
conditions in α in the first equivalence are themselves equivalent to each other, so we can
keep only one of them, and that the condition on β is equivalent to β = 0 since we assume
the existence of an i ∈ [1, D] such that ρ̂iτ(i) 6= 1. Since we assume that θ is not affine, we
can not have α− = α+, which by (B.14) rules out the possibility of having negative entries
in ρ̂, i.e., necessarily b = d = 0 in (B.12). If that is not the case, then the condition on α
in (B.14) is automatically met for all i ∈ [1, D], so we have that θ̄F is equivariant if and
only if β = 0, i.e., if and only if θ is a leaky ReLu function. This is the second statement
in Case 3 of Theorem 3, when we further notice that when b = 0 the only entry in ρ̂ that
can have been different from -1 and 1 is a λi in (B.12).

• If for all i ∈ [1, D], |ρ̂iτ(i)| = 1, then (B.12) simplifies as

ρ̂ =
a⊕
i=1

(
0 1
1 0

)
⊕

b⊕
i=1

(
0 −1
−1 0

)
⊕ (1)⊕c ⊕ (−1)⊕d .

In that case, the equivariance condition (B.13) is particularly simple, and true for any θ
for positive values. For each i such that ρ̂iτ(i) = −1 it reads ∀x ∈ R,−θ(x) = θ(−x), and
is therefore true if and only if θ is odd. Noticing that the latter constraint occurs if and
only if b+ d > 0 finally leads to the first and third statements in Case 3 of Theorem 3.

B.6 Additional result

B.7 Effect of data augmentation and size for non-equivariant models

Given a non-equivariant model, a simple way to let it ”learn” to be equivariant is to train it with
data augmentation, where for each sequence in the training set we add its reverse complement
to the training set. This doubles the size of the training set, which increases the training time.
If we compare such a non-equivariant model with an equivariant model with the same number
of channels in each layers, then it has about twice the same number of free parameters to train,
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APPENDIX B. REVERSE-COMPLEMENT EQUIVARIANT NETWORKS FOR DNA
SEQUENCES - APPENDIX

and we therefore call it ”big”; as an alternative, one may want to restrict the number of channels
in each layer to enforce the same number of parameters as the equivariant model. To assess the
benefits of data augmentation and number of channels, we plot in Figure B.1 the performance
of a standard, non-equivariant model with or without data augmentation, and with the same
number of channels or half of it, on the binary classification tasks. We see that the number
of channels has no significant impact on the performance, but that data augmentation has a
significant positive impact. In the main text, we therefore restrict ourselves to the standard
model with data augmentation as a non-equivariant baseline model.
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Supplementary Figure B.1 – Binary task performance of a standard, non-equivariant model
trained with (”Aug”) or without (”NoAug”) data augmentation, and with more (”Big”) or less
(”Standard”) channels.

B.8 Comparison of learning curves

Because equivariant models are supposed to converge faster, we looked into the learning curves
of our models, i.e., how the test performance increases as a function of the number of epochs
during training. However, we do not see a major difference in the learning dynamics between
the equivariant and non equivariant models.
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Supplementary Figure B.2 – AuROC performance of the four different models on the three
binary classification problems CTCF, MAX and SPI1, as well as their average over the course
of learning.
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APPENDIX C. AUGMENTED BASE PAIRING NETWORKS ENCODE RNA-SMALL
MOLECULE BINDING PREFERENCES - APPENDIX

C.1 Data Preparation

C.1.1 Binding Site extraction

A crucial step in our learning pipeline is the construction of ABPNs from crystal structure
data. Once all crystal structures are acquired, we consider spheres of varying radii around the
ligand to define a binding site. We studied two parameter choices which affect the number
and quality of the extracted binding sites: radius and protein vs. RNA content. As the radius
increases, we obtain a larger number of binding sites. However, since the crystal structures often
contain proteins, we increase the probability that the binding site will be dominated by protein
residues. We therefore compute the ratio of RNA to Protein residues in the binding site. The
resulting counts for binding sites are shown in Fig. C.1. From this data we choose a minimum
RNA concentration of 0.6 for our training model. If a PDB contains multiple binding events of
the same ligand, we keep only one at random to reduce redundancies. At this stage, we have
identified a set of atomic coordinates which correspond to binding sites. Since we apply a hard
distance cutoff in the crystal structure, the resulting graphs often have chain discontinuities. To
address this issue, we add all 1-neighbour breadth first nodes to the original graph, as well as
remove any disconnected components with fewer than 4 nodes.
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Supplementary Figure C.1 – Number of binding sites retrieved versus distance threshold and
RNA concentration threshold
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C.1. DATA PREPARATION

C.1.2 Fingerprint representation

We use the MACCS fingerprints to represent the chemical space of small molecules. A projection
of this representation as well as the space occupied by RNA ligands is depicted in Fig. C.2

Supplementary Figure C.2 – Two dimensional TSNE [Maaten and Hinton, 2008] embeddings
of chemical fingerprints sampled from the PDB database (RNA and protein binding). RNA
ligands are highlighted in red and protein ligands in blue. We label a few interesting ligands
such as ’KAN’ and ’FMN’ which correspond to well-known RNA binding classes known as
aminoglycosides and riboswitch-binding amines respectively.
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C.2 RGCN

We use a Relational Graph Convolutional Network (RGCN) [Schlichtkrull et al., 2018] as the
core of the fingerprint prediction model. An RGCN is a function that associates real vectors of
size d for each node of a graph, known as node embeddings. Given initial node embeddings h0

u

for each node u, an activation function σ and a graph structure that induces R edge-types and
neighboring structure for each node N r

u , we can then use learnable matrices W that yield other
node embeddings, according to the formula :

hl+1
u = σ

W l
r0h

l
u +

∑
r∈R

∑
v∈N ru

1

cu,r
W l
rh
l
v


Successive embeddings for each node are obtained by repeatedly using this process, until

each node is attributed a final embedding hL(u). For this work, we consider the base pairing
types to be distinct edge-types. We believe this is a fair approximation given the results of
isostericity comparisons showing that computing the geometric discrepancy between all pairs of
edge types yields close to a diagonal matrix [Stombaugh et al., 2009].

Once node embeddings are computed, we concatenate the resulting embedding matrix with a
one-hot encoding of the input graph’s nucleotides (A, U, C, G). Next, graph-level representation
is obtained by applying a widely used trainable Graph Attention Pooling layer [Veličković et al.,
2017], to map the node embeddings to a single vector ef ∈ Rd. Finally, we feed ef through a
Multi Layer Perceptron which yields probabilities for each index of the fingerprint ŷ.

ef = GAT(Graph, final node embeddings)

ŷ = MLP(ef )

We supervise this process using the binary cross entropy Lfp between the predicted finger-
print and the observed one y over all dimensions i, and train the model by minimizing this loss
over the training data.

Lfp =
k∑
i=0

[yi · log ŷi + (1− yi) · log(1− ŷi)]

C.3 Unsupervised Pre-Training

As described in the main text, we wish to define similarity functions K that take two nodes u
and v and return a number close to one if they have similar neighborhoods and close to zero for
dissimilar ones. In this paper we construct such a measure K from another measure d, that is
a function which compares the sets of edges at a distance l, from u and v, denoted Rlu, Rlv. We
then aggregate the results of the comparison of these sets for an increasing distance, according
to the formula :

kL(u, v) := N−1
L−1∑
l=0

λld(Rlu, R
l
v)

xxxii



C.4. MODEL ARCHITECTURE AND HYPERPARAMETERS

The λl is a decay term which allows us to attend more to structural information close to the
root nodes and we set λ = 0.5. We use N as a normalization constant (N = 1−λ

1−λL ) to ensure the
sum saturates at 1. d is defined to be a simple overlap measure on the histograms of base-pairing
edge types fR, and f ′R (i.e fR(i) stores the number of times edge type i is observed).

d(R,R′) :=
|fR ∩ f ′R|
|fR ∪ f ′R|

To compensate for the over-representation of a few edge types such as backbones and Watson-
Crick edges, we scale the d value with the commonly-used Inverse-Document Frequency (IDF)
factor [Ramos et al., 2003]. We show in Fig. C.3 an example of a pair of nodes that obtained a
high similarity score K after embeddings were computed.

Supplementary Figure C.3 – Example of pair of nodes given similar embeddings φ(u), φ(v).
The central pair of nodes which were used to make the comparison are colored in blue.

We then use the same RGCN function on the graph as before to annotate the nodes and get
for each node, its vector embedding hL(u) that depends on the parameters W . Finally, as in the
supervised setting, we define a loss function Lrep to minimize, that makes our network learn to
approximate the dissimilarity function :

Lrep = ‖K(u, v)− cosine(hL(u), hL(v))‖22

rankC(y, ŷ) = 1−
ρy,ŷ,C
|C|

(C.1)

C.4 Model Architecture and Hyperparameters
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Hyperparameter Value

RGCN Layers Dimensions 16, 16, 16
RGCN Number of Relations 13
RGCN Basis Sharing None
RGCN Activation ReLu
RGCN Dropout Probability 0.5
GAT Layer Default
Fully Connected Dimensions 16 166

Table C.1 – Hyperparameter choices for learning pipeline. RGCN parameters are identical for
the unsupervised pre-training and the fingerprint prediction networks.

C.5 Results

Experiment
Ranks L2

DecoyFinder RNA DecoyFinder RNA

random 0.265880 0.276721 0.0384392 0.038299
majority 0.320012 0.269375 0.073969 0.074892

swap 0.319836 0.269233 0.071212 0.071308
no-label 0.317259 0.272816 0.072830 0.073768
primary 0.323843 0.064917 0.181 0.066853

secondary 0.318527 0.299428 0.074738 0.076667
ABPN 0.322124 0.301635 0.091479 0.092328

ABPN + unsup. 0.303712 0.294309 0.093006 0.095090

Table C.2 – Standard deviation on ligand screen ranks and L2 distance achieved on held-out
binding sites for each condition on both decoy sets.

method 2 ABPN secondary primary no-label majority swap random
method 1

ABPN+unsup - 2.9-06 5.0e-26 1.4-22 2.0e-21 9.3e-25 7.1-26 2.3e-18
ABPN - 1.6e-11 5.6e-11 1.4e-08 4.2e-10 6.3e-12 2.0e-08
secondary - 3.2e-01 7.6e-01 1.2e-01 2.8e-02 1.7e-01
primary - 4.2e-01 2.7e-01 2.3e-02 3.1e-01
no-label - 5.5e-01 1.5e-02 1.7e-01
majority - 3.6e-01 3.3e-01
swap - 5.4e-01

Table C.3 – Pairwise Wilcoxon test for the DecoyFinder decoy set over the ligand ranks.
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Supplementary Figure C.4 – Ranks achieved by RNAmigos against the DecoyFinder screen.
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Supplementary Figure C.5 – L2 distance from the native ligand achieved with RNAmigos.
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Supplementary Figure C.6 – L2 distance from the native ligand achieved with Inforna
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Supplementary Figure C.7 – Performance per ligand type with Inforna software. A dendrogram
is drawn to illustrate families of similar ligands.
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Table C.4 – Details for each ligand in the dataset. PDB codes and full names are in the first
two columns, followed by the number of occurrences. The inforna and RNAmigos columns
contain the score achieved on average by each tool on the given ligand.

Ligand Name Count Inforna RNAmigos

SPD spermidine 11 0.74
NMY neomycin 11 0.95 0.94
FME n-formylmethionine 11 0.95
SPM spermine 11 0.57 0.82
SAM s-adenosylmethionine 11 0.60 0.82
PAR paromomycin 11 0.97 0.99
LYS lysine 10 0.75 0.91
GAI guanidine 10 0.24 0.65
FMN flavin 9 0.48 0.38
VAL valine 9 0.81
PRF 7-deaza-7-aminomethyl-guanine 8 0.47 0.78
HPA hypoxanthine 8 0.28 0.94
2BA (2r,3r,3as,5r,7ar,9r,10r,10as,12r,14ar)-2,9-bi... 8 0.54 0.54
ADE adenine 8 0.33 0.89
ACY acetic 8 0.88
EDO 1,2-ethanediol 8 0.40
GLY glycine 8 0.76
ARG arginine 8 0.72 0.69
EOH ethanol 7 0.60
PGE triethylene 7 0.67
PPU puromycin-5’-monophosphate 7 0.51
GOL glycerol 7 0.69 0.88
PUT 1,4-diaminobutane 7 0.94
C2E 9,9’-[(2r,3r,3as,5s,7ar,9r,10r,10as,12s,14ar)-... 7 0.79
GUN guanine 7 0.26 0.97
PEG di(hydroxyethyl)ether 7 0.80
GET geneticin 6 0.83
SPS sparsomycin 6 0.32 0.34
SRY streptomycin 6 0.58
TRP tryptophan 6 0.88
LLL (2r,3r,4r,5r)-2-((1s,2s,3r,4s,6r)-4,6-diamino-... 6 0.70
GNG 2’-deoxy-guanosine 5 0.98
TPP thiamine 5 0.16
GLP glucosamine 5 0.70
SAH s-adenosyl-l-homocysteine 5 0.73 0.78
5GP guanosine-5’-monophosphate 5 0.23
CLM chloramphenicol 5 0.45
NH4 ammonium 5 0.21 0.53

Continued on next page
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Table C.4 – Details for each ligand in the dataset. PDB codes and full names are in the first
two columns, followed by the number of occurrences. The inforna and RNAmigos columns
contain the score achieved on average by each tool on the given ligand.

Ligand Name Count Inforna RNAmigos

MES 2-(n-morpholino)-ethanesulfonic 5 0.21 0.21
ACT acetate 5 0.23 0.42
ERY erythromycin 5 0.42
HYG hygromycin 5 0.81
PRP alpha-phosphoribosylpyrophosphoric 5 0.64 0.35
S9L 2-[2-(2-hydroxyethoxy)ethoxy]ethyl 4 0.79
T1C tigecycline 4 0.37
BLS blasticidin 4 0.31
PRO proline 4 0.97
G4P guanosine-5’,3’-tetraphosphate 4 0.45 0.76
AMZ aminoimidazole 4 0.53 0.49
SIS (1s,2s,3r,4s,6r)-4,6-diamino-3-{[(2s,3r)-3-ami... 4 0.89
3HE 4-{(2r)-2-[(1s,3s,5s)-3,5-dimethyl-2-oxocycloh... 4 0.81
AM2 apramycin 3 0.89 0.95
PO4 phosphate 3 0.10
TAC tetracycline 3 0.35
VIR virginiamycin 3 0.48
1PE pentaethylene 3 0.92
EKJ 4-[(3-{2-[(2-methoxyethyl)amino]-2-oxoethyl}-1... 3 0.91
HGR hygromycin 3 0.68
ANM anisomycin 3 0.76
SCM spectinomycin 3 0.76
8UZ tc007 3 0.97
6HS (1s,2s,3r,4s,6r)-4,6-diamino-3-{[(2s,3r)-3-ami... 3 0.88
XXX (2r,3s,4r,5r,6r)-6-((1r,2r,3s,4r,6s)-4,6-diami... 3 0.98
CLY clindamycin 3 0.54
NEG negamycin 3 0.70
DOL 5-(2-diethylamino-ethanesulfonyl)-21-hydroxy-1... 3 0.04
B6M (1r,2s,3s,4r,6r)-4,6-diamino-2-{[3-o-(2,6-diam... 3 1.00
ZLD n-{[(5s)-3-(3-fluoro-4-morpholin-4-ylphenyl)-2... 3 0.52
IDG o-2,6-diamino-2,6-dideoxy-beta-l-idopyranose 3 0.93
GLN glutamine 3 0.99
AG2 agmatine 2 0.70
3CO cobalt 2 0.25
6GU 6-chloroguanine 2 0.15 0.97
8OS 5’-o-[(s)-hydroxy(4-methyl-1h-imidazol-5-yl)ph... 2 0.40 0.06
EGD n-ethylguanidine 2 0.37 0.64
UAM amicoumacin 2 0.79

Continued on next page
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Table C.4 – Details for each ligand in the dataset. PDB codes and full names are in the first
two columns, followed by the number of occurrences. The inforna and RNAmigos columns
contain the score achieved on average by each tool on the given ligand.

Ligand Name Count Inforna RNAmigos

RIO ribostamycin 2 0.96 0.99
4BW 2-amino-9-[(2r,3r,3as,5r,7ar,9r,10r,10as,12r,1... 2 0.61
KSG (1s,2r,3s,4r,5s,6s)-2,3,4,5,6-pentahydroxycycl... 2 0.82
SPK spermine 2 0.50
6AP 9h-purine-2,6-diamine 2 0.27 0.82
SE4 selenate 2 0.06
GTP guanosine-5’-triphosphate 2 0.51 0.34
ACA 6-aminohexanoic 2 0.98
747 (5z)-5-[(3,5-difluoro-4-hydroxyphenyl)methylid... 2 0.59
6GO 6-o-methylguanine 2 0.30 0.94
HMT (3beta)-o˜3˜-[(2r)-2,6-dihydroxy-2-(2-methoxy-... 2 0.19
MLI malonate 2 0.47
BDG o-2,6-diamino-2,6-dideoxy-alpha-d-glucopyranose 2 0.94
CYY 2-deoxystreptamine 2 0.92
G6P alpha-d-glucose-6-phosphate 2 0.84
PHA phenylalaninal 2 0.87
TOC 2,3,6-trideoxy-2,6-diamino 2 0.91
PCY pactamycin 2 0.68
SIN succinic 2 0.89
PHE phenylalanine 2 0.95
VIF flopristin 2 0.13
TOA 3-deoxy-3-amino 2 0.86 0.91
TFX 2-[4-(dimethylamino)phenyl]-3,6-dimethyl-1,3-b... 2 0.01 0.70
BDR beta-d-ribofuranosyl 2 0.77 0.77
8AN 3’-amino-3’-deoxyadenosine 2 0.23
38E (5z)-5-(3,5-difluoro-4-hydroxybenzylidene)-2,3... 2 0.96
TEP theophylline 2 0.08 0.39
EUS n-[(1r,2s,3s,4r,5s)-5-amino-4-{[(2s,3r)-3-amin... 2 0.71
TRS 2-amino-2-hydroxymethyl-propane-1,3-diol 2 0.81
CPT cisplatin 2 0.68
EDE edeine 2 0.71
AMP adenosine 2 0.61 0.33
SUC sucrose 2 0.63
1TU 4-(3,5-difluoro-4-hydroxybenzyl)-1,2-dimethyl-... 2 0.13 0.98
DAI (3as,9as)-2-pentyl-4-hydroxymethyl-3a,4,9,9a-t... 2 0.25
LC2 n-[(1s,2r,3e,5e,7s,9e,11e,13s,15r,19r)-7,13-di... 2 0.82
SPE thermine 2 0.61
AB9 (2r)-4-amino-n-{(1r,2s,3r,4r,5s)-5-amino-2-{2-... 2 0.89

Continued on next page
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Table C.4 – Details for each ligand in the dataset. PDB codes and full names are in the first
two columns, followed by the number of occurrences. The inforna and RNAmigos columns
contain the score achieved on average by each tool on the given ligand.

Ligand Name Count Inforna RNAmigos

TOY tobramycin 2 0.98
MGX 1-methylguanidine 1 0.19 0.93
6MN 2-amino-2-deoxy-6-o-phosphono-alpha-d-mannopyr... 1 0.86
GE2 3,5-diamino-cyclohexanol 1 0.98
2QB 5-(azidomethyl)-2-methylpyrimidin-4-amine 1 0.25
GCP phosphomethylphosphonic 1 0.45
GE1 3,4-dideoxy-2,6-amino-alpha-d 1 0.82 0.72
IPA isopropyl 1 0.53
NMZ (2s)-4-amino-n-{(1r,2s,3r,4r,5s)-5-amino-3-{[3... 1 0.87
ZZR 3,6-diamino-1,5-dihydro[1,2,4]triazolo[4,3-b][... 1 0.93
GMP guanosine 1 0.98
GZ4 7,8-dimethyl-2,4-dioxo-10-(3-phenylpropyl)-1,2... 1 0.79
3LK bc-3205 1 0.36
3TS (2s,3s,4r,5r,6r)-2-(aminomethyl)-5-azanyl-6-[(... 1 0.92
P12 4-[amino(imino)methyl]-1-[2-(3-ammoniopropoxy)... 1 0.62 0.41
ZZS 1,3,5-triazine-2,4-diamine 1 0.94
EZP n-[(1r,2r)-1,3-dihydroxy-1-(4-nitrophenyl)prop... 1 0.46
RPO (1r,2r,3s,4r,6s)-4,6-diamino-2-{[3-o-(2,6-diam... 1 0.96
GZ7 10-(6-carboxyhexyl)-8-(cyclopentylamino)-2,4-d... 1 0.98
ACE acetyl 1 0.07
RIB ribose 1 0.77 0.84
3K8 (14ar)-2,3,6-trimethoxy-11,12,13,14,14a,15-hex... 1 0.35
JS5 (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-((2... 1 0.91
SLZ l-thialysine 1 0.78
THF 5-hydroxymethylene-6-hydrofolic 1 0.36
51B 2-[(3s)-1-{[2-(methylamino)pyrimidin-5-yl]meth... 1 0.07
218 1-[(4-amino-2-methylpyrimidin-5-yl)methyl]-3-(... 1 0.45
JS4 (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-((2... 1 0.93
62B lefamulin 1 0.51
H4B 5,6,7,8-tetrahydrobiopterin 1 0.66 0.70
SLD (3z)-n-[(4e)-5-(4-{(5s)-5-[(acetylamino)methyl... 1 0.68
EZM n-[(1r,2r)-1,3-dihydroxy-1-(4-nitrophenyl)prop... 1 0.44
6NO avilamycin 1 0.10
3J2 nagilactone 1 0.28
HEZ hexane-1,6-diol 1 0.98
SJP (2r,3r)-4-amino-n-[(1r,2s,3r,4r,5s)-5-amino-4-... 1 0.87
JS6 (1r,2r,3s,4r,6s)-4,6-diamino-2-{[3-o-(2,6-diam... 1 0.92
3L2 (4s,5r,10e,12z,16r,16as,17s,18r,19ar,23ar)-4-h... 1 0.11

Continued on next page
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Table C.4 – Details for each ligand in the dataset. PDB codes and full names are in the first
two columns, followed by the number of occurrences. The inforna and RNAmigos columns
contain the score achieved on average by each tool on the given ligand.

Ligand Name Count Inforna RNAmigos

ISH (7r)-7-[(dimethylamino)methyl]-1-[3-(dimethyla... 1 0.16 0.22
P14 n-[2-(2-{[(4-{[amino(imino)methyl]amino}butyl)... 1 0.69 0.66
G34 (3as,4r,5s,6s,8r,9r,9ar,10r)-5-hydroxy-4,6,9,1... 1 0.17
P13 n-[2-(3-aminopropoxy)-5-(1h-indol-5-yl)benzyl]... 1 0.55 0.61
KAN kanamycin 1 1.00
7DG 7-deazaguanine 1 0.24 0.27
ON0 (1r,2r,3s,4r,6s)-4,6-diamino-2-{[3-o-(2,6-diam... 1 0.97
AB6 (2r)-4-amino-n-((1r,2s,3r,4r,5s)-5-amino-4-[(2... 1 0.89
GZG 4-{benzyl[2-(7,8-dimethyl-2,4-dioxo-3,4-dihydr... 1 0.53
G80 (3as,4r,5s,6s,8r,9r,9ar,10r)-5-hydroxy-4,6,9,1... 1 0.50
T8B thermorubin 1 0.66
2TB 1,3-diamino-4,5,6-trihydroxy-cyclohexane 1 0.89
3AW 6-methyl-1,3,5-triazine-2,4-diamine 1 0.95
2BP 9h-purin-2-amine 1 0.27 1.00
EZG n-[(1r,2r)-1,3-dihydroxy-1-(4-nitrophenyl)prop... 1 0.50
ARF formamide 1 0.32
5CR n-acetyl-l-phenylalanine 1 0.99
3KF (2s,3r,4s,4ar)-2,3,4,7-tetrahydroxy-3,4,4a,5-t... 1 0.50
ZBA 12,13-epoxytrichothec-9-ene-3,4,8,15-tetrol-4,... 1 0.24
N6M n-methyl-9h-purin-6-amine 1 0.23 0.99
4M2 3’-deoxy-3’-{[(2e)-3-(4-{[(4z)-6-o-(6-deoxy-3,... 1 0.23
N30 (1r,2r,3s,4r,6s)-4,6-diamino-2-[(5-amino-5-deo... 1 0.99
2QC 1-[4-(1,2,3-thiadiazol-4-yl)phenyl]methanamine 1 0.35 0.44
2HP dihydrogenphosphate 1 0.65
0EC 6,7-dimethoxy-2-(piperazin-1-yl)quinazolin-4-a... 1 0.43 0.31
RBF riboflavin 1 0.96
EKM 1-methyl-4-[(1e)-3-(3-methyl-1,3-benzothiazol-... 1 0.88
MMC methyl 1 0.18
EVN (2r,3r,4r,6s)-6-{[(2r,3ar,4r,4’r,5’s,6s,6’r,7s... 1 0.03
SFG sinefungin 1 0.73 0.99
EEM [(3s)-3-amino-4-hydroxy-4-oxo-butyl]-[[(2s,3s,... 1 0.23
CIR citrulline 1 0.70
AKN (2s)-n-[(1r,2s,3s,4r,5s)-4-[(2r,3r,4s,5s,6r)-6... 1 0.95
34G emetine 1 0.53
MT9 (3r,4s,5s,7r,9e,11s,12r)-12-ethyl-11-hydroxy-3... 1 0.91
RAP rapamycin 1 0.50 0.66
S81 (1r,2r,3s,4r,6s)-4,6-diamino-2,3-dihydroxycycl... 1 0.94
ATP adenosine-5’-triphosphate 1 0.08

Continued on next page
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Table C.4 – Details for each ligand in the dataset. PDB codes and full names are in the first
two columns, followed by the number of occurrences. The inforna and RNAmigos columns
contain the score achieved on average by each tool on the given ligand.

Ligand Name Count Inforna RNAmigos

GND 2-amino-5-guanidino-pentanoic 1 0.95
PRL proflavin 1 0.56
G0B (1s,2r,3s,4r,6s)-4,6-bis{[amino(iminio)methyl]... 1 0.94 0.90
PMZ 1-[10-(3-dimethylamino-propyl)-10h-phenothiazi... 1 0.03 0.05
TPS thiamin 1 0.11
PDI phosphoric 1 0.60
A2F 2-fluoroadenine 1 0.17 0.94
CNY 13,15-diamino-2-(aminomethyl)-3,4,9,12-tetrahy... 1 0.95
LEU leucine 1 0.97
3QB lincomycin 1 0.71
7AL chlorolissoclimide 1 0.33
29G pyrimido[4,5-d]pyrimidine-2,4-diamine 1 0.33 0.96
D2X 3-[(4-hydroxy-2-methylpyrimidin-5-yl)methyl]-5... 1 0.36
HN8 haemanthamine 1 0.65
95H ˜{n}-[(1˜{r},2˜{r})-1-[(2˜{r},3˜{r},4˜{s},5˜{r... 1 0.26
MYC 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4h... 1 0.53
AU3 gold 1 0.21
DKM 5-[(3s,4s)-3-(dimethylamino)-4-hydroxypyrrolid... 1 0.74
D2C (2s,4s,4ar,5as,6s,11r,11as,12r,12ar)-7-chloro-... 1 0.37
6UQ (2r,3s,4r,6s)-4-hydroxy-6-{[(2r,3ar,4r,4’r,5’s... 1 0.09
3KD (1s,2s,12bs,12cs)-2,4,5,7,12b,12c-hexahydro-1h... 1 0.36
B1Z adenosylcobalamin 1 0.11
OLZ o-(2-aminoethyl)-l-serine 1 0.81
ISI (7s)-7-[(dimethylamino)methyl]-1-[3-(dimethyla... 1 0.16 0.18
AGU aminoguanidine 1 0.25 0.82
FFO n-[4-({[(6s)-2-amino-5-formyl-4-oxo-3,4,5,6,7,... 1 0.66 0.30
HRG l-homoarginine 1 0.72
3J6 (3beta,7alpha)-3,7,15-trihydroxy-12,13-epoxytr... 1 0.41
CTC 7-chlorotetracycline 1 0.48
DX4 2-amino-1,9-dihydro-6h-purine-6-thione 1 0.94
L94 n’-{(z)-amino[4-(amino{[3-(dimethylammonio)pro... 1 0.30 0.27
NME methylamine 1 0.88
PA1 2-amino-2-deoxy-alpha-d-glucopyranose 1 0.85 0.72
B12 cobalamin 1 0.01
L8H 4-methoxynaphthalen-2-amine 1 0.47
BFT s-benzoylthiamine 1 0.26
ROS n,n’-tetramethyl-rosamine 1 0.30
MIX 1,4-dihydroxy-5,8-bis({2-[(2-hydroxyethyl)amin... 1 0.73 0.78

Continued on next page

xlii



C.5. RESULTS

Table C.4 – Details for each ligand in the dataset. PDB codes and full names are in the first
two columns, followed by the number of occurrences. The inforna and RNAmigos columns
contain the score achieved on average by each tool on the given ligand.

Ligand Name Count Inforna RNAmigos

NEB 2-deoxy-d-streptamine 1 0.81
M5Z (1r,2r,3s,4r,6s)-4,6-diamino-2-{[3-o-(2,6-diam... 1 0.94
PQ0 2-amino-4-oxo-4,7-dihydro-3h-pyrrolo[2,3-d]pyr... 1 0.22 0.94
TOB 1,3-diamino-5,6-dihydroxycyclohexane 1 0.84
V71 (1r,2r,3s,4r,6s)-4,6-diamino-2,3-dihydroxycycl... 1 0.94
3AY pyrimidine-2,4,6-triamine 1 0.98
6O1 evernimicin 1 0.03
SVN thieno[2,3-b]pyrazin-7-amine 1 0.15 0.94
29H 2-aminopyrimido[4,5-d]pyrimidin-4(3h)-one 1 0.27 0.98
6YG 2-[(3˜{s})-1-[(2-methoxypyrimidin-5-yl)methyl]... 1 0.59
GE3 5-methyl-4-methylamino-tetrahydro-pyran-2,3,5-... 1 0.73
MGR malachite 1 0.05 0.34
IEL n˜6˜-[(1z)-ethanimidoyl]-l-lysine 1 0.67
VIB 3-(4-amino-2-methyl-pyrimidin-5-ylmethyl)-5-(2... 1 0.30 0.87
BME beta-mercaptoethanol 1 0.72
N33 (2s,3r,4r,5s,6r)-3-amino-4-({[(2s,3r,4r,5s,6r)... 1 0.99
ZIT azithromycin 1 0.37
DGP 2’-deoxyguanosine-5’-monophosphate 1 0.94
3V6 bactobolin 1 0.49
IR3 iridium 1 0.20
EMK (2r,3s,4r,5r,8r,10r,11r,12s,13s,14r)-2-ethyl-3... 1 0.04
G19 (2s,3ar,4r,5s,6s,8r,9r,9ar,10r)-2,5-dihydroxy-... 1 0.17
MUL tiamulin 1 0.15
3H3 4-{(2r,5s,6e)-2-hydroxy-5-methyl-7-[(2r,3s,4e,... 1 0.63
7MB agelastatin 1 0.97
917 n-({(5s)-2-oxo-3-[4-(1,3-thiazol-5-yl)phenyl]-... 1 0.36
RS3 1-deoxy-1-[8-(dimethylamino)-7-methyl-2,4-diox... 1 0.96
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D.1 RNA data

D.1.1 Chopping algorithm

We present here the algorithm used to chop RNA into fixed maximal size pieces. The idea of
the algorithm is to recursively cut the RNA in halves up until the maximum size is reached. To
minimally disrupt the structure, we cut the structure in the orthogonal direction to the principal
axis of variation, according to Principal Component Analysis. This is detailed in Algorithm 3.

Algorithm 3: Chopper algorithm

Data: Full RNA Graph g, Maximum number of nodes N
Result: List of sub-structures of maximum size N .

16 if |g| ≤ N then
17 return
18 end
19 g
20 else
21 ga, gb ← Split g in halves based on the PCA
22 axes
23 return chopper(ga)
24 return chopper(gb)

25 end

D.1.2 Isostericity

We represent RNA with graphs whose nodes are nucleotides and edges represent an interaction
between those nucleotides. Let R denote the set of these interactions, this set contains backbone
covalent interactions, ’cWW’ interactions that are denoted as canonical base pairs and 11 other
interactions that represent other geometries. Isostericity denotes the closeness between relation
types at the 3-D level (base pairing geometries). Stombaugh [Stombaugh et al., 2009] computed
the geometric discrepancy between all pairs of relation types (Shown in Figure D.1). We include
a representation of the notion of isostericity between edge types in Figure D.1.
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Supplementary Figure D.1 – Isostericity matrix between relation types.

Graphs in RNA are directed but reciprocal, i.e. if nodes A and B are linked by an edge
A=(cSH)=>B, then automatically B and A are linked with an edge : B=(cHS)=>A. The afore-
mentioned isostericity relationship is symmetric, which means that for instance ∀r ∈ R, iso(cHS, r) =
iso(cSH, r). This would make our directed graphs as expressive as undirected graphs. A first
solution is to simply make our graphs undirected and use the isostericity directly. However,
relevant information is encoded in the direction of the edges, for instance the direction of the
backbone. Therefore, we expand the isostericity values by adding the following rules :

iso(b53, b35) = 0.2

∀r ∈ R \ {b53, b35}, iso(b53, r) = 0

∀r ∈ R, iso(r, r) = 1.

For all the other cases, we use the value reported in the isostericity matrix.

D.2 Graph Edit Distance

D.2.1 Model Selection with Graph Edit Distance

The choice of similarity function sG is application specific. One can use a function which max-
imizes performance on a downstream supervised learning task, or one can choose a similarity
function which best encodes structural identity [Hamilton et al., 2017b]. Since supervised learn-
ing data for RNA 3D structures is scarce, we opt for the latter and propose the Graph Edit
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Distance (GED) (or its similarity analog exp[−GED]) between rooted subgraphs, as this is
the widely accepted yet computationally intensive gold standard for structure comparison [Gao
et al., 2010]. Hence, we choose the sG which most closely correlates with GED. Interestingly,
GED is a generalization of the subgraph isomorphism problem [Bunke and Riesen, 2008] which
is at the core of previous RNA motif works such as CaRNAval and rna3dmotif.

D.2.2 Rooted GED

In a nutshell, the GED between two graphs G, H is the minimum cost set of modifications that
can be made to G in order to make it isomorphic to H. This naturally encodes a notion of
similarity since similar pairs will require few and inexpensive modifications, and vice versa. The
Graph Edit Distance (GED) between two graphs g and h is thus defined as follows:

GED(G,H) = min
(e1,...,ek)∈Υ(G,H)

k∑
i=1

c(oi). (D.1)

where Υ is the set of all edit sequences which transform G into H. Edit operations include:
node/edge matching, deletion, and insertion. c(o) is the cost of performing edit operation o and
c is known as the cost function. Since we will be decomposing our graphs as rooted subgraphs,
we define a slight modification to the GED formulation which compares two graphs given that
their respective roots must be matched to each other. This algorithm is detailed in Algorithm
4.

D.2.3 RNA GED

We have adapted this algorithm to RNA data. We use the isostericity matrix [Stombaugh et al.,
2009] for edge substitutions, and do not apply a penalty to node substitutions. Let E(.) be a
function that returns the edge label for a given edge, and ISO the isostericity function which
returns the similarity between edge types. We define an RNA cost function over pair of edges p
and q as follows :

c(p→ q) = ISO(E(p), E(q))

c(p→ ∅) =


α backbone

β canonical

θ non-canonical

For our experiments, we set α = 1, β = 2, θ = 3 to emphasize the differences in non-canonical
interactions between graphs. We propose a simple modification to allow for comparison of
rooted graphs (Algorithm 4), and use the general version of GED to validate the ultimate full
subgraph-level quality of our identified motifs.

We include in Figure D.2 an example of GED values for two pairs of graphlets, illustrating
how similar graphs get lower values of distance.
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Algorithm 4: Rooted A* GED

Data:

• Pair of graphs G, H, (WLOG let G be the smaller of the two graphs.)

• cost function c

• heuristic h.

• rG ∈ N (G) root in first graph

• rH ∈ N (G) root in second graph

Result: Minimum cost rooted distance and alignment between two graphs.
26 OPEN ← priorityQueue()
27 VG ← G.nodes()
28 VH ← H.nodes()
29 v ← first node in G OPEN.add((rG, r

′
H), c(rG, rH) + h(v0, v

′) while OPEN do
30 vmin ← OPEN.pop()
31 Let Mk ← be partial mapping {(v1, v

′
1), .., (vk, v

′
k)}

32 if |Mk| = |VG| then
33 Mapping complete
34 return Mk

35 end
36 Add nodes at next depth
37 foreach u ∈ VH \ vmin do
38 OPEN.add(vmin ∪ (vk+1, u), c(vk+1, u) + h(vk+1, u))
39 end

40 end

●

▶

●

▷

●

○

Supplementary Figure D.2 – Examples of similar and dissimilar pairs according to the GED
A* algorithm.
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D.3 Rooted Subgraph Comparisons

Here, we define a similarity function between a pair of rooted subgraphs, gu and gu′ . We propose
two main classes of sG: ring-based, and matching-based similarity functions.

D.3.1 Edge ring similarity functions

The first sG functions we consider are a weighted sum of a distance between l-hop neighborhoods
(aka rings) of each subgraph. This formulation is inspired by the function proposed in [Ribeiro
et al., 2017]. We let Rlu = {(u′, w) : δ(u, u′) = l ∀(u′, w) ∈ E} be the set of edges at distance l
from the root node u. Let d be a normalized similarity function between two sets of edges. One
such function can be formulated as a matching operation between the edges of each ring. Let
X is a binary matrix describing a matching from one ring to another and S a scoring function
corresponding to this matching, d writes as :

d(Ru, Rv) := min−
∑
e∈Ru

∑
e′∈Rv

SL(e),L(e′)Xe,e′

Let 0 < λ < 1 be a decay factor to assign higher weight to rings closer to the root nodes,
and N−1 be a normalization constant to ensure the function saturates at 1. Then we can obtain
a structural similarity for the rooted subgraphs around u and v as :

kL(u, v) := 1−N−1
L−1∑
l=0

λld(Rlu, R
l
v)

The first function (R_1) simply uses a delta function to compare to different edges. This
assignment problem thus reduces to computing the intersection over union score between the
histograms fR of edge labels found at each ring. However, this function treats all edge types
equally and ignores the isostericity relationships. The second function (R_iso) has a matching
value of 1 for backbone edges matched with backbone edges, 0 for backbone matched with any
non covalent bond and the isostericity value for the similarity value of two non covalent bonds.

D.3.2 Matching-based similarity functions

Here, sG operates on the output of a function f : gu → Ω which decomposes a rooted subgraph
into a set of objects Ω (e.g. sets/rings of nodes, edges, or smaller subgraphs such as graphlets
[Shervashidze et al., 2009]). These objects can then be assigned structural and positional com-
patibilities. We let Cω,ω′ be the structural compatibility between objects ω, ω′, for example, edge
isostericity. Next, Dω,ω′ assigns a cost on pairs of objects depending on the relative path dis-
tance to their respective root nodes. We propose various similarity functions, based on optimal
matching of these objects with the most general form being:

sG(gu, gu′) := min
X

∑
ω∈Ω

∑
ω′∈Ω′

(αCω,ω′ + βDω,ω′)Xω,ω′ (D.2)

l
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where X is a binary matrix describing a matching from the elements of Ω to Ω′, α and β are
user-defined weights for emphasizing positional vs structural compatibility. We solve for the
optimal matching between two sets of structural objects using the Hungarian algorithm [Kuhn
and Yaw, 1955].

Since the degree of our graphs is strongly bounded (max degree 5), we can define a graphlet
as a rooted subgraph of radius 1 and obtain a manageable number of possible graphlets. This
lets us define an f which produces structurally rich objects. Moreover the rooted aspect and
the small size of those graphs make the GED computation tractable.

While the GED computation is tractable for such small graphs, it is still expensive when
repeated many times. For this reason, we implement a solution caching strategy which stores
the computed GED when it sees a new pair of graphlets, and looks up stored solutions when it
recognizes a previously seen pair Supplementary Algorithm 5.

We can now define S from Equation D.2 as Sij = exp[−γGED(gi, gj)]. We apply an expo-
nential to the distance to bring the distances to the range [0,1], and convert them to a similarity.
An optional scaling parameter γ is included to control the similarity penalty on more dissimilar
graphs. We also note that the construction of S can be parallelized but we leave the implemen-
tation for future work.

D.3.3 Additional settings

We have experimented with several additional parameters. We tried including an Inverse Docu-
ment Frequency (IDF) weighting to account for the higher frequency of non canonical interaction.
This amounted to scaling all comparison values by the product of the IDF term they involved.

We also tried adding a renormalization scheme to give higher values to matches of long rings.
In particular, we want to express that having a match of 9 out of 10 elements is stronger than
having a match of 2 out of 3. Let S be the raw matching score, S the normalized one and L be
the length of the sequences, we have tried two normalization settings, the “sqrt” and “log” ones :

sqrt : S =
[S
L

] 5√
L

log : S =
[S
L

] 1
1+logL

D.3.4 Graphlets hashing and distributions

We build a hash function which maps isomorphic graphlets to the same output, while assigning
different outputs to non-isomorphic ones, allowing us to look up graphlet GED values. This is
done by building a sparse representation of an explicit Weisfeiler-Lehman isomorphism kernel,
with a twist that edge labels are included in the neighborhood aggregation step. The resulting
hash consists of counts over the whole graphlet of hashed observed sequences of edge labels.
We enforce the edge label hashing function to be permutation invariant by sorting the observed
label sequence. In this manner, isomorphic graphs are given identical hash values regardless of
node ordering. Our hashing procedure outlined in Supplemental Algorithm 5 also allows us to
study the distribution of graphlets composing RNA networks Supplemental Fig D.3, where we
can observe a characteristic power law distribution.
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Algorithm 5: Weisfeiler-Lehman Edge Graphlet Hashing

Data:

• Graphlet g,

• Maximum depth K

• HASH, function from strings to integers

• L function returning the label for an edge

Result: Hash code for graphlet h
41 h← counter()
42 foreach k ∈ {1, ..,K} do
43 foreach u ∈ gN do
44 lku ← HASH({L(u, v)⊕ lk−1

v ∀v ∈ N (u)})
45 end
46 h← h ∪ counter({lu ∀u ∈ g})
47 end
48 return h
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a Graphlet frequency distribution b Most frequent graphlet c Example of a rare
graphlet.

Supplementary Figure D.3 – Graphlet distribution and examples.
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D.4 Model Training

D.4.1 Mathematical framing

In order to identify related groups of rooted subgraphs using only the similarity function we
would have to perform and store N2 operations (where N is the total number of nodes in G.
When working with an order of 107 nodes, this quickly becomes prohibitive. Once nodes in each
graph are embedded into a vector space, searches and comparisons are much cheaper.

We therefore approximate the sG function over all pairs of rooted subgraphs using node
embeddings. We use a Relational Graph Convolutional Network (RGCN) model [Schlichtkrull
et al., 2018] as parametric node embedding function φ(u) → Rd which maps nodes to a vector
space of dimensionality d. The network is implemented in Pytorch [Paszke et al., 2019] and
DGL [Wang et al., 2019]. It is trained to minimize :

L = ‖〈φ(gu), φ(gu′)〉 − sG(gu, gu′)‖22, (D.3)

To focus performance on subgraphs that contain non canonical nodes and avoid the loss to
be flooded by the canonical interactions (Watson Crick pairs), we then scale this loss based on
the presence of non canonical interactions in the neighborhood of each node being compared.
Given the rate of non canonical interactions r and 1u an indicator function that denotes the
presence of non-canonical interactions in the neighborhood of node u, the scaling Su,v of the
gu, gu′ term writes as :

Sgu,gu′ = (1 +
1gu

r
)(1 +

1gu′

r
), Lscaled = S� L (D.4)

D.4.2 Architecture and hyperparameters choices

We use as many layers as the number of hops in the similarity function so that both functions
have access to the same support in the subgraphs. The embeddings resulting from this message
passing are then fed to a Linear Layer. The dimension per layers that we used were [16, 32, 32],
we used the default instantiation of DGL with ReLus and self-loops. We tried using Dropout
but chose to not include it in our model in the end. The model was then trained using Adam on
sampling pairs on the order of k*N, where N is the number of chunks and k ∼ 5. Empirically,
we had convergence for values around k = 3.

We can then perform clustering in the embedding space using any linear clustering algorithm.
We denote the resulting clusters as 1-motifs as they represent the aforementioned structural
blocks of RNA.

D.5 Metrics on the structural clusters

We present in Figure D.4 some metrics on the clustering of our structural embeddings. The
silhouette scores suggest that the number of clusters necessary to obtain satisfying scores is
around 60. However seeding the method with more centroids can yield better results, even if
they end up collapsed in the end. We used 200 centroids that got collapsed into 60 distinct
centroids.
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Supplementary Figure D.4 – Metrics when clustering with minibatch K-means, with k = 262
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D.6. RETRIEVE COMPLEXITY

The cluster population has an interesting distribution, with the two first clusters heavily
populated (stem nodes), then an interesting population of graphlets and finally very rare ones.
Despite the curse of dimensionality, we see that the nodes are much closer to their centroids
than they are one from another. These metrics suggest that the structures present in RNA do
fall into well separated clusters.

D.6 Retrieve complexity

In this section, we want to investigate the complexity of the retrieve algorithm. This complexity
depends highly on both the topology of the meta-graph, the query graph and the individual
RNA-graphs.

Let Np be the number of edges in each of the p parallel edges of the query graph, and Ep
be the corresponding meta-edge. We consider the edges of the query graph in the order of the
parallel edges, let p(t) = mink,

∑
kNk > t, the parallel edge considered at time t.

At each step t, the complexity bound is going to depend on the number of candidate motifs
inside each RNA graph at time t-1 as well as the number of possible additional edges to insert
into those candidates. If we denote as Mg,t the number of candidates in graph g at time t,
and Ng,t the number of edges in graph g that belong to the meta-edge Ep(t),g, the complexity
writes as O(

∑
t

∑
g∈G Ep(t),gMg,t) The term Ep(t),g mostly acts as a sparsity term, as it would

not exceed ten but can very often be zero if the graph does not include such an edge. Therefore,
we introduce the notation Gp, the set of RNA graphs that contain an edge in Ep, to omit this
term. We also introduce tg,t =

∑
l<tEp(l),g the number of query edges explored present in graph

g at time t.

Let us now try to address the second term Mg,t. We divide our algorithm into each of
the parallel edges and dive into the evolution of this term. Mg,t represents the number of
combinations of nodes in a given graph that are currently considered as a candidate motif.
Every different p is going to launch a combinatorial explosion that results from the numerous
possibilities of combining nodes. For RNA graphs, it is mostly a problem for stems that are
ubiquitous and all share the same structure. Starting from all stem nodes, after one merging
step we have to add all possible combinations of adjacent stem nodes. We give a loose bound
of this number that is practical for our application, but note that after sufficient merging, there
are just the full stems as candidates, showing that this bound becomes loose.

We rely on the fact that we can delete a partial solution if it is completely contained in
another one because its expansion can only result in lower scores. Thus after a given motif gets
expanded we can remove it from M. Therefore, we can bound this number by counting the
number of children a given element can produce. Using set structure enables fast neighborhood
checking operations but also ensures we do not add the same object twice. For stems that are
the worst case scenario, each connected component of length k can yield a maximum of k + 2
children but any of these children is added twice because the edge has two ends. Therefore after
k expansions,we have Mg,t+k < Mg,t

(k+2)!
2k

. This results in a final loose complexity bound of :

O(
∑

t

∑
g∈Gp(t)

(tg,t+2)!

2tg,t
).

As mentioned before this is not a good bound when k grows because the stems get completed.
Therefore, there are a lot of ways to select 3 adjacent stem nodes of a 6 stem, but only one to
get all 6. In practice, during each cycle, the number Mg,t grows and decreases, making the
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algorithm tractable, starting back from reasonable numbers at each cycle. Empirically, running
the retrieve algorithm on a single core rarely exceeds a few seconds.

D.7 MAA

Algorithm 6: Motif Aggregation Algorithm (MAA). At each step, k, the algorithm
iterates through edges (m,m′) of the meta-graph, applying Algorithm 1 to construct
a k + 1 motif µ. The updated meta-connectivity is stored as new meta-edges.

Data:

• Meta-Graph G,

• Minimum density δ (number of motif instances)

• Number of steps K

Result: List of meta-graphs
49 M← list()
50 E ← G.edges()
51 foreach k ∈ {1, ..,K} do
52 E ′ ← ∅
53 M[k]← list()
54 while E do
55 m,m′ ← E .pop()
56 µ← merge(m.subgraphs, (m,m′))
57 if |µ| > δ then
58 M[t].append(µ)

/* Connect new node to adjacent clusters */

59 foreach c′ ∈ N (µ) do
60 E ′.add((µ, c′))
61 end

62 end
63 E ← E ′
64 end

65 end
66 return M

D.8 Full results for the similarity function validations

We include in this section the full results we got for a grid search validation in the absence of a
better way to guide our intuition Table D.2, D.3, as well as a condensed version in Table D.1.
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D.8. FULL RESULTS FOR THE SIMILARITY FUNCTION VALIDATIONS

method depth decay normalization r r th time (s)

edge hist. 1 0.5 sqrt 0.69 0.80 <0.001
edge hist. + iso 1 0.5 sqrt 0.74 0.80 <0.001
edge hungarian + iso 1 − sqrt 0.80 0.91 <0.001
graphlets hist. 1 any None 1.0 1.0 0.029
graphlet hungarian 1 − None 1.0 1.0 0.030
edge hungarian + iso 2 − sqrt 0.64 0.75 <0.001
graphlets hist. 2 0.8 sqrt 0.63 0.68 0.102
graphlet hungarian 2 − sqrt 0.63 0.70 0.433

1hop RGCN 1 − − 0.826 0.927 <0.001
2hop RGCN 2 − − 0.596 0.577 <0.001

Table D.1 – Correlation with the GED for different kernels and embedding settings. For each
experiment (row) we report the Pearson correlation coefficient r. Correlations are computed
pairwise on a subset of 200 nodes, as described in the main text. We include the result on this
whole data as r, as well as a subset which include only pairs of nodes with a GED below 6
(r th)
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Method Decay IDF Normalization Correlation Thresholded Correlation

graphlet NaN NaN None 0.999982 1.000000
R graphlets 0.8 NaN None 0.999982 1.000000
R graphlets 0.5 NaN None 0.999982 1.000000
R graphlets 0.3 NaN None 0.999982 1.000000
graphlet NaN NaN sqrt 0.907263 0.945552
R graphlets 0.8 NaN sqrt 0.907263 0.945552
R graphlets 0.5 NaN sqrt 0.907263 0.945552
R graphlets 0.3 NaN sqrt 0.907263 0.945552
hungarian NaN 0.0 None 0.796640 0.910618
hungarian NaN 0.0 sqrt 0.784811 0.916345
hungarian NaN 1.0 sqrt 0.777268 0.916563
hungarian NaN 1.0 None 0.756889 0.862990
R iso 0.5 1.0 sqrt 0.737533 0.798435
R iso 0.8 1.0 sqrt 0.737533 0.798435
R iso 0.3 1.0 sqrt 0.737533 0.798435
R iso 0.3 0.0 sqrt 0.731762 0.799086
R iso 0.5 0.0 sqrt 0.731762 0.799086
R iso 0.8 0.0 sqrt 0.731762 0.799086
R iso 0.3 1.0 None 0.715601 0.817003
R iso 0.8 1.0 None 0.715601 0.817003
R iso 0.5 1.0 None 0.715601 0.817003
R iso 0.5 0.0 None 0.701981 0.829820
R iso 0.3 0.0 None 0.701981 0.829820
R iso 0.8 0.0 None 0.701981 0.829820
R 1 0.5 1.0 sqrt 0.689727 0.798827
R 1 0.5 1.0 None 0.689727 0.798827
R 1 0.3 1.0 sqrt 0.689727 0.798827
R 1 0.3 1.0 None 0.689727 0.798827
R 1 0.8 1.0 sqrt 0.689727 0.798827
R 1 0.8 1.0 None 0.689727 0.798827
R 1 0.3 0.0 sqrt 0.683472 0.838047
R 1 0.3 0.0 None 0.683472 0.838047
R 1 0.5 0.0 sqrt 0.683472 0.838047
R 1 0.8 0.0 None 0.683472 0.838047
R 1 0.5 0.0 None 0.683472 0.838047
R 1 0.8 0.0 sqrt 0.683472 0.838047

Table D.2 – One hop rooted subgraph correlation to GED

lviii



D.8. FULL RESULTS FOR THE SIMILARITY FUNCTION VALIDATIONS

Method Decay IDF Normalization Correlation Thresholded Correlation

hungarian NaN 1.0 sqrt 0.640183 0.745018
graphlet NaN NaN sqrt 0.627242 0.701199
R graphlets 0.8 NaN sqrt 0.625675 0.683274
hungarian NaN 0.0 sqrt 0.606648 0.689525
hungarian NaN 1.0 None 0.589180 0.624824
R graphlets 0.5 NaN sqrt 0.588992 0.598480
R graphlets 0.8 NaN None 0.570733 0.584230
R iso 0.8 1.0 sqrt 0.565505 0.546167
R iso 0.8 0.0 sqrt 0.558772 0.541444
R graphlets 0.3 NaN sqrt 0.557002 0.512982
graphlet NaN NaN None 0.554304 0.595573
hungarian NaN 0.0 None 0.552988 0.664127
R graphlets 0.5 NaN None 0.548846 0.519385
R iso 0.8 1.0 None 0.538128 0.532596
R iso 0.5 1.0 sqrt 0.529356 0.499034
R graphlets 0.3 NaN None 0.527732 0.455359
R iso 0.5 0.0 sqrt 0.524007 0.492044
R iso 0.8 0.0 None 0.512851 0.516201
R iso 0.5 1.0 None 0.506934 0.479951
R 1 0.8 1.0 sqrt 0.500248 0.506578
R 1 0.8 1.0 None 0.500248 0.506578
R iso 0.3 1.0 sqrt 0.491474 0.439565
R iso 0.3 0.0 sqrt 0.487652 0.432580
R iso 0.5 0.0 None 0.485761 0.463078
R 1 0.8 0.0 sqrt 0.481469 0.506201
R 1 0.8 0.0 None 0.481469 0.506201
R iso 0.3 1.0 None 0.474367 0.420955
R 1 0.5 1.0 None 0.469777 0.453362
R 1 0.5 1.0 sqrt 0.469777 0.453362
R iso 0.3 0.0 None 0.456932 0.406642
R 1 0.5 0.0 sqrt 0.452601 0.450131
R 1 0.5 0.0 None 0.452601 0.450131
R 1 0.3 1.0 sqrt 0.438522 0.395088
R 1 0.3 1.0 None 0.438522 0.395088
R 1 0.3 0.0 sqrt 0.422765 0.391077
R 1 0.3 0.0 None 0.422765 0.391077

Table D.3 – Two hop rooted subgraph correlation to GED.
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D.9 MAA supplemental results

Motif Size
Number
of Motifs

Mean Number
of Instances

1 48 2041.90
2 101 830.22
3 163 1112.97
4 260 1090.64
5 460 1264.23
6 823 1318.79
7 1641 1308.76

Table D.4 – Number of motifs and of instances per motif for each size, as found by the MAA
algorithm

Dataset Covered Missed

BGSU Petrov et al. [2013b] 112 14
RNA3DMotif Djelloul [2009] 2 0
CaRNAval Reinharz et al. [2018a] 147 10

Table D.5 – Nearly all motifs identified by three published RNA motif tools are a subset of the
motifs found by VeRNAl.

lx
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Supplementary Figure D.5 – Agreement with existing motif libraries. Each cell value ranges
from 0 to 1, where 1 indicates that all the nodes of an instance of a known motif are contained
in a VeRNAl motif.
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E.1 Data

E.1.1 Data collection and curation

For training and assessing the models, we have used the dataset that is presently accessible
on the website of our database iPPI-DB (https://ippidb.pasteur.fr/targetcentric/). These data
were retrieved from the PDBe database [Mir et al., 2018] using a filtering procedure and different
quality control checks. The procedure operates directly on a JSON file containing all available
information within PDBe to select PDB structures accordingly. For Xray structures and CryoEM
structures, resolutions should be below 3.5 Å. For Xray structures RFree-RFactor were below
0.07. For CryoEM structures, FSC was below 0.143. Once the selected PDB structures were
downloaded, all PL structures were superimposed onto the corresponding HD complexes (sharing
an identical UNIPROT ID) in order to identify orthosteric compounds competing for the same
interface. Ligands were selected as to be not more than 6 Å away from the interface and contain
at least five heavy atoms. Heavy atoms within compounds must be one the following (C, N,
O, S, P, I, B, Br, Cl, F). Finally, we removed structures with alternative locations for residues
at the interface within HD or PL complexes. Thus, we built a dataset of 2290 PL complexes and
6736 HD complexes for the training and the assessment of the models.

E.1.2 Data splitting

To avoid data leakage, we split our protein structures data based on CATH [Sillitoe et al., 2021]
folds. To do so, we have used the pre-computed annotations available for each protein domain
and annotated our interaction domains with those CATH classifications. We have then put only
specific CATH in the train, validation and train split. We have excluded the following CATH
classes from the train split : 1-25-10-10, 1-10-530-10, 1-10-245-10, 1-20-120-560, 1-50-10-20, 2-
30-29-30, 2-30-42-10, 2-130-10-10, 2-60-120-620, 2-30-30-50, 3-40-390-10, 3-30-40-10, 3-90-70-10,
3-10-110-10, 3-90-540-10.

E.1.3 Data representation

The volumetric CNN framework consists in treating the interaction sites as 3D images. First we
introduce functional atom types : α-carbon (Cα), donor and receptor of h-bonds and positively
and negatively charged atoms and hydrophobic/aromatic atoms. At each voxel, we associate a
vector that represents the probability of presence of these functional atom types. This vector is
computed by considering the input protein as a sum of Gaussian densities centered around each
atom in the dimension corresponding to each atom type. We then perform an interpolation of
this Gaussian sum on a regular grid, which yields a vector at each grid point (Supplementary
Figure E.1). To encode the protein partner, we start with the same encoding and add a ’void’
channel so that on each grid point the encoding vector sum to one and represents a probability
distribution. To represent iPPIs, we use only one channel for all atom types. This encoding
is dependent on the arbitrary basis in which the protein is represented. To limit this arbitrary
choice, we applied rotational data augmentation during the training of the network.
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Supplementary Figure E.1 – Visual representation of the grid embedding process. The different
atom-types are encoded with a Gaussian density around the atom center in atom-types grids.
Then these grids are stacked on top of one another.
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E.2 Model

We use a U-Net [Ronneberger et al., 2015], with blocks containing 3D convolutions, Batch
Normalization [Ioffe and Szegedy, 2015] and ELU activations [Clevert et al., 2015]. In each
block, the first convolution goes from in_channels to (in_channels+out_channels)/2 and
the second goes to out_channels. Following the classical structure of a U-Net model, at each
level, we use one such block to decrease the spatial extension of the block by a factor two,
while doubling the channels. We start with eight channels and use a depth of four. We use a
twist on the classical U-Net, because we branch our network into a PL and HD one at the last
deconvolution block of the decoder. Then each branch gets convoluted one last time and is
activated by a sigmoid or a softmax.

E.3 Hyper-parameters optimization (HPO)

To choose the optimal values for the hyperparameters of the network, we conducted an hyper-
parameter optimization (HPO). The principle is to choose the values for these hyper-parameters
(number of layers, number of neurons per layer) automatically by considering the training as a
function evaluation. The function needs to output a scalar value that we want to minimize. Then,
many discrete optimization algorithms such as Gaussian processes [Williams and Rasmussen,
2006] can be used to find optimal parameters with regards to the minimization of this metric.
We designed a custom metric to take into account several aspects of the prediction, such as
the distance between a prediction and its supervision but also their overlap or the size of the
prediction. This metric and optimization procedure is described in details below. We then ran
the HPO for approximately 100 experiments, minimizing this metric on the validation set. This
gave us our final predictive model.

E.3.1 HPO Metric

The HPO metric we chose to optimize need to account for :

• The accurate position of at least one predicted volume

• A good ranking of our correct predicted volume

• A good shape correspondence between the predicted volume and the actual partner

We first compute a distance metric called dist overlap that is the mean of the distance be-
tween the center of mass of the predicted volume and the partner and the overlap between the
highest scoring voxels of the predicted volume and the partner. We then pick the predicted
volume that yields the best dist overlap value and compute two additional metrics to encourage
giving it a high rank. The first one is simply the exponential of its rank over its surface (to nor-
malize the rank by the expected number of volumes). The second one, deemed as rank overdist

is an expectation-like formula as follows :
∑

volume∈volumes(1−
rank(volume)
|volumes| )2dist overlap(volume).

We add a DVO score for the shape complementary. The DVO metric is only computed on suc-
cessful prediction at 6 Å and consists in the volume of the overlap over the volume of the union.
Finally, we add a penalty for having too many predicted volumes by subtracting to the metric
value the number of predicted volumes divided by the surface.

lxvi



E.3. HYPER-PARAMETERS OPTIMIZATION (HPO)

All of these contributions are then summed and we empirically checked on the validation
set that the satisfactory looking predictions had a high metric value while failed ones had a low
value. We can then proceed to the automatic optimization of the hyper-parameters with regards
to this scalar metric.

E.3.2 Hyper-optimization

We have tweaked the type of model (U-Net vs forward), the type of blocks used by the U-Net,
the amount of neurons at the beginning at the network and the depth of the network. Moreover,
we have also tuned some post-processing parameters, namely the maximum euclidean distance
between two watershed basins and the threshold of the merging value between two neighboring
basins.

The convergence of this procedure is plotted in Supplementary Figure E.2. We see that
the optimization procedure starts by decreasing in the first half of the optimization and then
plateaus hinting it has converged.

Supplementary Figure E.2 – Successive values of the HPO metric as a function of the HPO
epochs
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E.4 Supplementary Results

Additional metrics were computed to compare InDeep to Kalasanty on the Chen benchmark
(Supplementary Figure E.3), and on the PL datasets (Supplementary Figure E.4). The Success
rate metric on the sc-PDB dataset was evaluated (Supplementary Figure E.5) as well as the
channels’ validation (Supplementary Figure E.6).
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Supplementary Figure E.3 – Left : TM-score between the Chen benchmark and the InDeep

training set. As can be seen, there is only little overlap, showing that most systems are still
relevant for our comparisons. Systems with a TM-score higher than 0.5 were discarded for
this comparison. Right : Overall process of the metric calculations for PL to evaluate the
performance of our model, in the cav, lig and cavlig settings. We rely on the aligned holo
and apo structures to place the ligands for both structures and compute cavities using Volsite
around this ligand for each structure. The numbers presented in this diagram pertain to the
Chen dataset.
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Supplementary Figure E.4 – Distributions of the DVO values for InDeep and Kalasanty on
the Chen benchmark (Top) and on the test set filtered by TM-score (Bottom). We only plot

the values for the systems for which the method has a successful DCC of less than 6 Å. The
metrics are computed with the VolSite cavities associated with the ligand position given by
the PDB (A.), the ligand position itself (B.) and the ligand position having a cavity detected
by VolSite (C.).
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Supplementary Figure E.5 – Success rate as defined in the main text for different DCC thresh-
olds on the scPDB dataset
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Supplementary Figure E.6 – Z-scores of the predicted distributions of the probabilities for each
channel (one distribution per line). Each line corresponds to a distribution around atoms of
the partner that have a certain channel annotation.

Supplementary Figure E.7 – Top: The hydrophobic-atom typed channel (green surface), pre-
dicted on Bcl-2, (green cartoon) correctly matches with the known hydrophobic hotspots of
the protein partner Bax (orange cartoon). Likewise, the Cα-atom typed channel (blue surface)
correctly predicts the α-helix shape of the Bax backbone (depicted as a shape close to a cylin-
der). Bottom: InDeep ligandability prediction on Bcl-2 (pdb 2xa0). The red surface patches
of InDeep ligandability are localized around the known hot spots of the Bcl-2/Bax interaction.
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E.5 Molecular Dynamics setup

The MD input files were prepared from the unbound form of Bcl-2 (pdb 1gjh) with CHARMM-
GUI solution builder server [Lee et al., 2015b] and CHARMM36m force field [Huang et al., 2016].
The protein was placed in a cubic unit cell with a minimum distance of 10 Å to the box edge.
The system was solvated with an explicit water model (TIP3P) and KCl ions were added at 0.15
M concentration. Steepest descent minimization was performed in 5000 steps. Subsequently, a
125 ps equilibration in the NVT ensemble was performed at 303.15 K. Finally, production was
run for 1µs in the NPT ensemble. GROMACS [Spoel et al., 2005] was used for the simulations.
MD frames were saved every 50 picoseconds resulting in 20 000 frames used as InDeep input
structures.

E.6 Binding site definition for RMSD calculations and InDeep predic-
tions during MD

In order to obtain the list of residues defining the Bcl-2 orthosteric binding site we have retrieved
from the dataset 16 PL structures of Bcl-2: 1ysw, 2o21, 2o22, 2o2f, 2w3l, 4aq3, 4ieh, 4lvt, 4lxd,
4man, 6gl8, 6o0k, 6o0l, 6o0m, 6o0o and 6o0p. Then, for each structure the solvent accessible
area by residue was measured with naccess [Hubbard et al., 1993] in presence and absence of
the orthosteric ligand. Residues having lower solvent accessible area when the ligand is present
are considered as part of the binding site. As a result the following residues were used to define
the binding site: 96, 99, 100, 103, 104, 107, 108, 111, 112, 115, 133, 136, 137, 144, 145, 146,
148, 149, 152, 153, 156, 198, 202 and 143. Heavy atoms of these residues have been selected to
measure the RMSD along the MD compared to the 16 PL structures and to the HD structure
(pdb 2xa0). The resulting RMSD curves are shown in Figure 6.5 in the main text.

E.7 Pymol plugin

The tool can be added as a PyMol plugin for an interactive visualisation of the results. A
screenshot is shown in Supplementary Figure E.8.
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Supplementary Figure E.8 – The results can be visualized through a PyMol plugin, that lets the
user see the different pockets, scores and their corresponding volumes at different probability
levels.
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F.1 Model Architecture and Training

The Variational Autoencoders (VAE), first introduced in [Kingma and Welling, 2013], couples
a generator network with an encoder network that performs approximate inference on the data.
It relies on the hidden variable hypothesis that postulates that the data distribution can be
generated from simpler, common hidden variables that live in a space called the latent space.
A prior pmodel(z), usually chosen as a normal distribution, governs the prior distribution of the
latent variables and ensures the smoothness of the latent space.

Given an input x, the encoder computes its encoding z = φ(x) as the parameters of a
distribution over latent variables qφ(z|x). The generator then draws a sample z̃ from qφ(z|x)
and decodes it through the decoder network to get x̂ = θ(z̃) . The decoder network represents
the function pθ(x|z).

VAEs can be trained via Variational Inference: The encoder network outputs the parameters
of the distribution qφ(z|x). Usually, this distribution is chosen as gaussian, hence the encoder
outputs a mean and standard deviation that parametrize q. Gradient descent is then used to
minimize the objective function (F.1) with respect to the encoder and decoder parameters:

LVAE(x) = −Eqφ(z|x) [log pθ(x|z)] +DKL( pmodel(z) || qφ(z|x) ) (F.1)

Where the KL-divergence DKL of two distributions is defined as

DKL(p||q) = E[log p(x)− log q(x)] (F.2)

The expectation can be estimated by Monte Carlo sampling, and the KL-divergence between
two gaussian distributions has a closed form solution. Hence the VAE approach is easy to
implement. In our case, the encoder is an RGCN model that takes in a molecular graph,
encodes it in the latent space and decodes it as a one-hot representation of a SELFIES. This
pipeline is illustrated in Supplementary Figure F.1.
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Graph            : 

Molecule Representations
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SMILES        : 
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Gaussian Sampler from Encoding :
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Supplementary Figure F.1 – Training of the VAE : The molecule gets encoded based on its
molecular graph into a vector through an Relational Graph Convolution Network. Then this
vector gets decoded into a selfie using a Gated Recurrent Unit Network. Finally a loss gets com-
puted between the decoded SELFIES and the canonical one representing the input molecule.
The error is back-propagated through the network.
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F.2 Model Implementation and Results

The encoder consists in 3 Relational-GCN layers of hidden size 32, with skip connections, re-
sulting in 96-dimensional embeddings. Two dense layers map to the mean and log standard
deviation of the latent embeddings, of dimension 56. The decoder is a 3-layer GRU with hidden
states of dimension 450. The model was implemented in PyTorch [Paszke et al., 2019] and DGL
[Wang et al., 2019]. The model was trained for 50 epochs using Adam optimizer, a learning
rate of 10−3 and an exponential decay with rate 0.9 every 40k steps. Batch size was set to 64.
For the first 40k steps, we train the model only on reconstruction loss, and then progressively
increase the weight of the KL term by 0.02 every 2k steps, until it reaches 0.5

Supplementary Figure F.2 – Fraction of correctly reconstructed characters (a) and KL diver-
gence term (b) during model training, for training and validation set

Model Valid Unique 1k Unique 10k IntDiv IntDiv2 Filters Novelty

HMM 0.0760 0.6230 0.5671 0.8466 0.8104 0.9024 0.9994
NGram 0.2376 0.9740 0.9217 0.8738 0.8644 0.9582 0.9694
Combinatorial 0.9979 0.9983 0.9948 0.8812 0.8741 0.7912 0.9913
CharRNN 0.9748 1.0000 1.0000 0.8562 0.8503 0.9943 0.8419
AAE 0.9368 1.0000 0.9973 0.8557 0.8499 0.9960 0.7931
VAE 0.9767 1.0000 0.9984 0.8558 0.8498 0.9970 0.6949
JTN-VAE 1.0000 1.0000 0.9992 0.8512 0.8453 0.9778 0.9153
LatentGAN 0.8970 1.0000 0.9970 0.8565 0.8504 0.9727 0.9488
graph2selfies 1.0000 1.0000 0.9998 0.8560 0.8496 0.9557 0.9097

Table F.1 – Moses metrics for all models benchmarked in Moses [Polykovskiy et al., 2018] and
graph2selfies

F.3 Docking Scores Distributions

We set the exhaustiveness of the conformation space search to 16, as a reasonable compromise
between running time and enrichment factor. We see that the distribution of actives compound
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scores is well shifted from the inactives one with a mean around -9.5 kcal/mol.

Supplementary Figure F.3 – Distribution of docking scores of active molecules vs ExCAPE
inactives (left) and random compounds from the ZINC training set used to train the prior
(right)

F.4 Query-efficient Optimization

F.4.1 Bayesian Optimization

Bayesian optimization uses Gaussian processes as a surrogate model for black box functions that
are costly to evaluate. It enables optimizing the objective in a query-efficient way, by sampling
points that maximize expected improvement. However, it has inherent limitations for the lead
generation problem we attempt to solve. To take samples, some kind of rigid (not learnt nor
adaptive) sampling is generally used, meaning that the expected improvement under a Gaussian
process model is computed over each point of a grid of a certain resolution.

This computation of the expected improvement over the samples space does not scale well
to a high number of dimensions for a large batch size as the grid evaluation becomes intractable
(This amounts to finding an estimate on all molecules and only picking the most promising
candidates for docking). In addition, BO was shown to perform better when the latent space
is shaped by the objective function [Gómez-Bombarelli et al., 2018; Griffiths and Hernández-
Lobato, 2017]. This is not the case for binding affinities, since the chemical space is likely to
exhibit activity cliffs and scattered activity peaks. The final goal is to be able to take samples
from the model, and this method uses rejection sampling to generate favorable samples. This
choice limits scalability when sampling tens of thousands of compounds.

Bayesian optimization was implemented using BoTorch [Balandat et al., 2019]. A Gaussian
process was trained to predict the objective on 500 initial samples selected to be maximally
diverse in the Moses training set. The Gaussian process was then trained for 20 steps by
sampling a batch of 50 compounds using Expected Improvement as the acquisition function. For
the optimization of QSAR activity scores, the 500 initial samples were selected as maximally
diverse from the union of Moses and the QSAR train actives.
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F.4.2 CbAS

To address the limitations of Bayesian Optimization, we turn to a recently published method
: Conditioning by Adaptive Sampling (CbAS) [Brookes et al., 2019]. This method trains a
generative model that also seeks to maximize an objective function. This method uses a prior
generative model and shifts its distribution to maximize an expectation. Queries are used in
an efficient way thanks to an importance sampling scheme coupled with reachable objectives
for the model. The alternating phases of tuning and sampling also enable a more efficient
implementation.

CbAS starts with a prior generative model with parameters θ(0), p(x|θ(0)) and the optimiza-
tion is formulated by conditioning this probability on the random variable S, p(x|S,θ(0)). This
random variable represents the values for a probabilistic (or noisy) oracle : S = (f(x) > γ)|x.
We now see that this conditioned probability model is a distribution that maximizes the function
f when γ goes to the maximum value of the function. However this conditional probability is in-
tractable and the authors propose to use variational inference to approximate it. The parametric
family is a generative model with parameters φ, q(x|φ) that solves :

φ∗ = argmin
φ

DKL

(
p(x|S,θ(0))||q(x|φ)

)
= argmax

φ
Ep(x|θ(0)) [p(S|x)log(q(x|φ)]

The authors then use importance sampling instead of always sampling from the prior to esti-
mate this expectation. The proposal distributions are the successive generative models obtained
at each iteration. The last key idea is to use a fixed quantile of the successive generative models
distributions as a value for γ(t), to set reachable objectives for the model : S(t) = f(x) > γ(t).
A detailed derivation can be found in the original paper and result in solving for φ(t) for each t
in the following equation :

φ(t+1) = argmax
φ

Eq(x|φ(t))

[
p(x|θ(0))

q(x|φ(t))
p(S(t)|x)log(q(x|φ)

]

As a prior model p(x|θ(0)), one can either use a model trained on a broad chemical space, or
leverage previously discovered actives to narrow-down the chemical space by fine tuning the prior
on the actives. Then, we take samples from the search model (initialized with the prior), use an
oracle with a noise model to get p(S(t)|x) and fine tune the search model with the adequately
re-weighted samples.

F.5 Additional OptiMol Results

F.5.1 clogP

The top 3 molecules found by OptiMol after 12, 16 and 20 steps are shown in Figure F.4. Like
in [You et al., 2018], we note that the best molecules look significantly different from the ZINC
clean leads of the 250k dataset. This is due to the nature of the composite logP objective, and
more reasonable molecules, though lower-scoring, can be obtained using early-stopping OptiMol.
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Supplementary Figure F.4 – (left) Top 3 molecules found by OptiMol after 12, 15 and 20 steps
(right) Top 3 molecules reported by [You et al., 2018]

lxxix



APPENDIX F. OPTIMOL - APPENDIX

F.5.2 QSAR validation

QSAR model details

The Excape database [Sun et al., 2017a] contains 3482 active molecules for human Dopamine
Receptor 3, and more than 300k inactives. We follow the procedure in [Olivecrona et al., 2017]
to split the actives into 5 folds: First, we cluster the actives using rdkit’s Morgan fingeprints
(r = 3) and the Butina algorithm with a similarity cutoff of 0.4. We then sort the clusters by
size and iteratively assign them to each of the 5 folds. We randomly sample 100k inactives and
assign them in the same proportions, to obtain 5 folds of equal size.

We then use the same model architecture as Skalic et al. [2019b]: LightGBM gradient boost-
ing decision tree algorithm [Ke et al., 2017] (1000 trees, 0.8 colsample-bytree and keeping default
values of other parameters) was applied to train a QSAR classification model for DRD3. The
model was evaluated on 5-fold cross-validation, and obtained an average f1-score of 0.89 (sd =
0.014).

F.5.3 QSAR results

We note that DRD3 is part of the training set of Skalic et al. [2019b], hence there is an inherent
bias towards the generation of compounds that share a similar shape with known DRD3 binders.
The performance obtained in this experiment is therefore an upper bound of their performance,
but still significantly outperforms OptiMol in the first decile. The upper deciles of the ranked list
contain significantly more samples from OptiMol than decoys, showing they ability of OptiMol
to design compounds that score well under QSAR, without ever leveraging known actives.

Model Optimization

We have tried tuning several parameters and found the training dynamics quite subtle, as too
much training increased the scores but crashed the diversity and too little did not optimize
the objective functions. We have tuned the number of samples at each epochs, the number of
epochs, the usage of teacher forcing, different noise model for the oracle, the number of epochs,
the optimizer used (Adam or SGD), the scheduler used, the initial learning rate, the impact of
the quantile picked as well as using a non-decreasing γ. We found that that the best combination
was reached using 30 epochs of 1000 samples, teacher forcing, gaussian noise of variance of the
same magnitude as the variance of the data, Adam optimizer with no scheduler and default
learning rate, 6th quantile and a non-decreasing γ.

Model robustness

Multi-objective training

As in the main text, the dynamics of learning for the multi-objective model are in Figure F.7.

Sampling quality assessment

Figure F.8 shows the distributions of docking scores for the first new samples from the generative
model and the last ones, when taking 100k random samples. As stated in the main text, the
difference in distributions is statistically significant (p-value of 10−14) but small compared to the
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Supplementary Figure F.5 – Distribution of samples from Skalic et al., OptiMol and decoys
when ranked by QSAR score. The results are split by scores deciles (higher is better) and in
each decile, we report the fraction of compounds originating from each population. The list
contains 12k compounds, equally split between samples from Skalic et al., OptiMol samples
and decoys from ZINC (filtered as in Skalic et al. [2019b]).
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Supplementary Figure F.6 – Trajectories of the mean result obtained on three independent
runs of OptiMol.
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Supplementary Figure F.7 – Left : The average and standard deviation of the docking scores
obtained at each iteration. Right : The number of compounds never sampled before at each
iteration.
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difference with uniform sampling over ZINC. This shows the OptiMol generative models have
learned to sample uniformly a large chemical space with enhanced docking scores.

Supplementary Figure F.8 – Distribution of docking scores of the 2500 first molecules sampled
by the generative model and the 2500 last molecules sampled, for OptiMol (left) and OptiMol-
multiobjective (right)
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Supplementary Figure F.9 – 24 random samples from Optimol (left) and OptiMol-
multiobjective (right), sorted by docking scores (lower is best).
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